These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
778 related articles for article (PubMed ID: 25461133)
1. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Wei Y; Zhang J; Wang X; Duan Y Biosens Bioelectron; 2015 Mar; 65():16-22. PubMed ID: 25461133 [TBL] [Abstract][Full Text] [Related]
2. Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring. Lv L; Li D; Cui C; Zhao Y; Guo Z Biosens Bioelectron; 2017 Jan; 87():136-141. PubMed ID: 27542086 [TBL] [Abstract][Full Text] [Related]
3. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Sun AL; Zhang YF; Sun GP; Wang XN; Tang D Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001 [TBL] [Abstract][Full Text] [Related]
4. Detachable nanoladders: A new method for signal identification and their application in the detection of ochratoxin A (OTA). Shao X; Zhu L; Feng Y; Zhang Y; Luo Y; Huang K; Xu W Anal Chim Acta; 2019 Dec; 1087():113-120. PubMed ID: 31585559 [TBL] [Abstract][Full Text] [Related]
5. Magnified fluorescence detection of silver(I) ion in aqueous solutions by using nano-graphite-DNA hybrid and DNase I. Wei Y; Li B; Wang X; Duan Y Biosens Bioelectron; 2014 Aug; 58():276-81. PubMed ID: 24657649 [TBL] [Abstract][Full Text] [Related]
6. A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe. Wang B; Wu Y; Chen Y; Weng B; Xu L; Li C Biosens Bioelectron; 2016 Jul; 81():125-130. PubMed ID: 26938491 [TBL] [Abstract][Full Text] [Related]
7. A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Chen J; Zhang X; Cai S; Wu D; Chen M; Wang S; Zhang J Biosens Bioelectron; 2014 Jul; 57():226-31. PubMed ID: 24590125 [TBL] [Abstract][Full Text] [Related]
8. Rolling chain amplification based signal-enhanced electrochemical aptasensor for ultrasensitive detection of ochratoxin A. Huang L; Wu J; Zheng L; Qian H; Xue F; Wu Y; Pan D; Adeloju SB; Chen W Anal Chem; 2013 Nov; 85(22):10842-9. PubMed ID: 24206525 [TBL] [Abstract][Full Text] [Related]
9. Primer remodeling amplification-activated multisite-catalytic hairpin assembly enabling the concurrent formation of Y-shaped DNA nanotorches for the fluorescence assay of ochratoxin A. Wang J; Wang Y; Liu S; Wang H; Zhang X; Song X; Yu J; Huang J Analyst; 2019 May; 144(10):3389-3397. PubMed ID: 30990481 [TBL] [Abstract][Full Text] [Related]
10. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Wu S; Duan N; Ma X; Xia Y; Wang H; Wang Z; Zhang Q Anal Chem; 2012 Jul; 84(14):6263-70. PubMed ID: 22816786 [TBL] [Abstract][Full Text] [Related]
11. Amplified Fluorescent Aptasensor for Ochratoxin A Assay Based on Graphene Oxide and RecJ Zhao H; Xiong D; Yan Y; Ma C Toxins (Basel); 2020 Oct; 12(11):. PubMed ID: 33113906 [TBL] [Abstract][Full Text] [Related]
12. A Label-Free Aptasensor for Ochratoxin a Detection Based on the Structure Switch of Aptamer. Liu F; Ding A; Zheng J; Chen J; Wang B Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29857594 [TBL] [Abstract][Full Text] [Related]
13. Aptamer-DNAzyme hairpins for biosensing of Ochratoxin A. Yang C; Lates V; Prieto-Simón B; Marty JL; Yang X Biosens Bioelectron; 2012 Feb; 32(1):208-12. PubMed ID: 22221796 [TBL] [Abstract][Full Text] [Related]
14. Label-Free G-Quadruplex Aptamer Fluorescence Assay for Ochratoxin A Using a Thioflavin T Probe. Wu K; Ma C; Zhao H; He H; Chen H Toxins (Basel); 2018 May; 10(5):. PubMed ID: 29757205 [TBL] [Abstract][Full Text] [Related]
15. Tuning the Aggregation/Disaggregation Behavior of Graphene Quantum Dots by Structure-Switching Aptamer for High-Sensitivity Fluorescent Ochratoxin A Sensor. Wang S; Zhang Y; Pang G; Zhang Y; Guo S Anal Chem; 2017 Feb; 89(3):1704-1709. PubMed ID: 28208258 [TBL] [Abstract][Full Text] [Related]
16. A fluorescent aptasensor based on a DNA pyramid nanostructure for ultrasensitive detection of ochratoxin A. Nameghi MA; Danesh NM; Ramezani M; Hassani FV; Abnous K; Taghdisi SM Anal Bioanal Chem; 2016 Aug; 408(21):5811-5818. PubMed ID: 27311951 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence Anisotropy-Based Signal-Off and Signal-On Aptamer Assays Using Lissamine Rhodamine B as a Label for Ochratoxin A. Li Y; Zhang N; Wang H; Zhao Q J Agric Food Chem; 2020 Apr; 68(14):4277-4283. PubMed ID: 32182058 [TBL] [Abstract][Full Text] [Related]
18. Aptamer-Based Fluorometric Ochratoxin A Assay Based on Photoinduced Electron Transfer. Zhao H; Xiang X; Chen M; Ma C Toxins (Basel); 2019 Jan; 11(2):. PubMed ID: 30678367 [TBL] [Abstract][Full Text] [Related]
19. Exonuclease I-assisted fluorescent method for ochratoxin A detection using iron-doped porous carbon, nitrogen-doped graphene quantum dots, and double magnetic separation. Wang C; Tan R; Li J; Zhang Z Anal Bioanal Chem; 2019 Apr; 411(11):2405-2414. PubMed ID: 30828760 [TBL] [Abstract][Full Text] [Related]
20. Identification of allosteric nucleotide sites of tetramethylrhodamine-labeled aptamer for noncompetitive aptamer-based fluorescence anisotropy detection of a small molecule, ochratoxin A. Zhao Q; Lv Q; Wang H Anal Chem; 2014 Jan; 86(2):1238-45. PubMed ID: 24354298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]