BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 25461145)

  • 1. Labeling-free fluorescent detection of DNA hybridization through FRET from pyrene excimer to DNA intercalator SYBR green I.
    Zhou R; Xu C; Dong J; Wang G
    Biosens Bioelectron; 2015 Mar; 65():103-7. PubMed ID: 25461145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free detection of histone based on cationic conjugated polymer-mediated fluorescence resonance energy transfer.
    Lu X; Jia H; Yan X; Wang J; Wang Y; Liu C
    Talanta; 2018 Apr; 180():150-155. PubMed ID: 29332793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications.
    Zipper H; Brunner H; Bernhagen J; Vitzthum F
    Nucleic Acids Res; 2004 Jul; 32(12):e103. PubMed ID: 15249599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient fluorescence resonance energy transfer (FRET) between pyrene and perylene assembled in a DNA duplex and its potential for discriminating single-base changes.
    Kashida H; Takatsu T; Sekiguchi K; Asanuma H
    Chemistry; 2010 Feb; 16(8):2479-86. PubMed ID: 20066689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplified fluorescent recognition of g-quadruplex folding with a cationic conjugated polymer and DNA intercalator.
    Xu H; Gao S; Yang Q; Pan D; Wang L; Fan C
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3211-6. PubMed ID: 21028820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection: an effective strategy to greatly improve discrimination ability toward single-base mismatch.
    Li H; Luo Y; Sun X
    Biosens Bioelectron; 2011 Sep; 27(1):167-71. PubMed ID: 21783356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence energy transfer between fluorescein label and DNA intercalators to detect nucleic acids hybridization in homogeneous media.
    Talavera EM; Bermejo R; Crovetto L; Orte A; Alvarez-Pez JM
    Appl Spectrosc; 2003 Feb; 57(2):208-15. PubMed ID: 14610959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cationic conjugated polyelectrolyte/molecular beacon complex for sensitive, sequence-specific, real-time DNA detection.
    Feng X; Duan X; Liu L; An L; Feng F; Wang S
    Langmuir; 2008 Nov; 24(21):12138-41. PubMed ID: 18834161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free fluorescence strategy for sensitive detection of exonuclease activity using SYBR Green I as probe.
    Xu M; Li B
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():22-6. PubMed ID: 26117197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenylethynylpyrene excimer forming hybridization probes for fluorescence SNP detection.
    Prokhorenko IA; Astakhova IV; Momynaliev KT; Zatsepin TS; Korshun VA
    Methods Mol Biol; 2009; 578():209-22. PubMed ID: 19768596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and fluorescence study of a quaternized copolymer containing pyrene for DNA-hybridization detection.
    Yang L; Zhao M; Zhang R; Dong J; Zhang T; Zhan X; Wang G
    Chemphyschem; 2012 Dec; 13(18):4099-104. PubMed ID: 23129170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Easily denaturing nucleic acids derived from intercalating nucleic acids: thermal stability studies, dual duplex invasion and inhibition of transcription start.
    Filichev VV; Vester B; Hansen LH; Pedersen EB
    Nucleic Acids Res; 2005; 33(22):7129-37. PubMed ID: 16377781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of DNA hybridization by use of a lanthanide fluorescent intercalator that specifically binds to double stranded DNA.
    Nojima T; Kondoh Y; Takenaka S; Ichihara T; Takagi M; Tashiro H; Matsumoto K
    Nucleic Acids Res Suppl; 2001; (1):105-6. PubMed ID: 12836286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary electrophoresis of double-stranded DNA fragments using a new fluorescence intercalating dye EvaGreen.
    Sang F; Ren J
    J Sep Sci; 2006 Jun; 29(9):1275-80. PubMed ID: 16833086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient energy transfer from pyrene to perylene assembled inside DNA duplex.
    Kashida H; Takatsu T; Asanuma H
    Nucleic Acids Symp Ser (Oxf); 2009; (53):29-30. PubMed ID: 19749244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iFRET: an improved fluorescence system for DNA-melting analysis.
    Howell WM; Jobs M; Brookes AJ
    Genome Res; 2002 Sep; 12(9):1401-7. PubMed ID: 12213777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive and selective detection of silver(I) in aqueous solution with silver(I)-specific DNA and Sybr Green I.
    Yang Q; Li F; Huang Y; Xu H; Tang L; Wang L; Fan C
    Analyst; 2013 Apr; 138(7):2057-60. PubMed ID: 23397579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-Free DNA Sequence Detection through FRET from a Fluorescent Polymer with Pyrene Excimer to SG.
    Xu C; Zhou R; Zhang R; Yang L; Wang G
    ACS Macro Lett; 2014 Sep; 3(9):845-848. PubMed ID: 35596346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Förster resonance energy transfer (FRET) and competition of fluorescent dyes on DNA microparticles.
    Kim J; Lee JS; Lee JB
    Int J Mol Sci; 2015 Apr; 16(4):7738-47. PubMed ID: 25856674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrene-perylene as a FRET pair coupled to the N2'-functionality of 2'-amino-LNA.
    Lindegaard D; Madsen AS; Astakhova IV; Malakhov AD; Babu BR; Korshun VA; Wengel J
    Bioorg Med Chem; 2008 Jan; 16(1):94-9. PubMed ID: 17920888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.