BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 25461154)

  • 1. Binding-induced collapse of DNA nano-assembly for naked-eye detection of ATP with plasmonic gold nanoparticles.
    Wang J; Lu J; Su S; Gao J; Huang Q; Wang L; Huang W; Zuo X
    Biosens Bioelectron; 2015 Mar; 65():171-5. PubMed ID: 25461154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles.
    Mao Y; Fan T; Gysbers R; Tan Y; Liu F; Lin S; Jiang Y
    Talanta; 2017 Jun; 168():279-285. PubMed ID: 28391854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A colorimetric ATP assay based on the use of a magnesium(II)-dependent DNAzyme.
    Zhu S; Wang X; Jing C; Yin Y; Zhou N
    Mikrochim Acta; 2019 Feb; 186(3):176. PubMed ID: 30771011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.
    Gao Z; Qiu Z; Lu M; Shu J; Tang D
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):1006-1012. PubMed ID: 27825528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An enzyme-free and amplified colorimetric detection strategy via target-aptamer binding triggered catalyzed hairpin assembly.
    Quan K; Huang J; Yang X; Yang Y; Ying L; Wang H; He Y; Wang K
    Chem Commun (Camb); 2015 Jan; 51(5):937-40. PubMed ID: 25435498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A label-free hairpin aptamer probe for colorimetric detection of adenosine triphosphate based on the anti-aggregation of gold nanoparticles.
    Sang F; Zhang X; Liu J; Yin S; Zhang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():122-127. PubMed ID: 30928837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine detection by using gold nanoparticles and designed aptamer sequences.
    Li F; Zhang J; Cao X; Wang L; Li D; Song S; Ye B; Fan C
    Analyst; 2009 Jul; 134(7):1355-60. PubMed ID: 19562201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate.
    Qu F; Sun C; Lv X; You J
    Mikrochim Acta; 2018 Jul; 185(8):359. PubMed ID: 29978289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double-functionalized gold nanoparticles with split aptamer for the detection of adenosine triphosphate.
    Cheng S; Zheng B; Wang M; Lam MH; Ge X
    Talanta; 2013 Oct; 115():506-11. PubMed ID: 24054625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aptamer-based colorimetric detection of proteins using a branched DNA cascade amplification strategy and unmodified gold nanoparticles.
    Chang CC; Chen CY; Chuang TL; Wu TH; Wei SC; Liao H; Lin CW
    Biosens Bioelectron; 2016 Apr; 78():200-205. PubMed ID: 26609945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles.
    Huo Y; Qi L; Lv XJ; Lai T; Zhang J; Zhang ZQ
    Biosens Bioelectron; 2016 Apr; 78():315-320. PubMed ID: 26638040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive colorimetric detection of K(I) using catalytically active gold nanoparticles triggered signal amplification.
    Chen Z; Tan L; Wang S; Zhang Y; Li Y
    Biosens Bioelectron; 2016 May; 79():749-57. PubMed ID: 26774090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoplasmonic detection of adenosine triphosphate by aptamer regulated self-catalytic growth of single gold nanoparticles.
    Liu Q; Jing C; Zheng X; Gu Z; Li D; Li DW; Huang Q; Long YT; Fan C
    Chem Commun (Camb); 2012 Oct; 48(77):9574-6. PubMed ID: 22871726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive colorimetric carcinoembryonic antigen biosensor based on hyperbranched rolling circle amplification.
    Liang K; Zhai S; Zhang Z; Fu X; Shao J; Lin Z; Qiu B; Chen GN
    Analyst; 2014 Sep; 139(17):4330-4. PubMed ID: 24996292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A colorimetric aptamer biosensor based on cationic polymer and gold nanoparticles for the ultrasensitive detection of thrombin.
    Chen Z; Tan Y; Zhang C; Yin L; Ma H; Ye N; Qiang H; Lin Y
    Biosens Bioelectron; 2014 Jun; 56():46-50. PubMed ID: 24463195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.
    Zhou Q; Lin Y; Lin Y; Wei Q; Chen G; Tang D
    Talanta; 2016; 146():23-8. PubMed ID: 26695229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer.
    Song KM; Cho M; Jo H; Min K; Jeon SH; Kim T; Han MS; Ku JK; Ban C
    Anal Biochem; 2011 Aug; 415(2):175-81. PubMed ID: 21530479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical pico-biosensing of lead using plasmonic gold nanoparticles and a cationic peptide-based aptasensor.
    Solra M; Bala R; Wangoo N; Soni GK; Kumar M; Sharma RK
    Chem Commun (Camb); 2019 Dec; 56(2):289-292. PubMed ID: 31808471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gold nanoparticle-based label free colorimetric aptasensor for adenosine deaminase detection and inhibition assay.
    Cheng F; He Y; Xing XJ; Tan DD; Lin Y; Pang DW; Tang HW
    Analyst; 2015 Mar; 140(5):1572-7. PubMed ID: 25597304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aptamer enzymatic cleavage protection assay for the gold nanoparticle-based colorimetric sensing of small molecules.
    Guieu V; Ravelet C; Perrier S; Zhu Z; Cayez S; Peyrin E
    Anal Chim Acta; 2011 Nov; 706(2):349-53. PubMed ID: 22023872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.