BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 25461167)

  • 1. Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors.
    Kim M; Lim JW; Kim HJ; Lee SK; Lee SJ; Kim T
    Biosens Bioelectron; 2015 Mar; 65():257-64. PubMed ID: 25461167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled particle membranes for in situ concentration and chemostat-like cultivation of microorganisms on a chip.
    Lee J; Kim M; Park J; Kim T
    Lab Chip; 2016 Mar; 16(6):1072-80. PubMed ID: 26907857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry.
    Kim HJ; Lim JW; Jeong H; Lee SJ; Lee DW; Kim T; Lee SJ
    Biosens Bioelectron; 2016 May; 79():701-8. PubMed ID: 26773374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multiplexed microfluidic platform for rapid antibiotic susceptibility testing.
    Mohan R; Mukherjee A; Sevgen SE; Sanpitakseree C; Lee J; Schroeder CM; Kenis PJ
    Biosens Bioelectron; 2013 Nov; 49():118-25. PubMed ID: 23728197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in microfluidic chip integrated electronic biosensors for multiplexed detection.
    Liao Z; Wang J; Zhang P; Zhang Y; Miao Y; Gao S; Deng Y; Geng L
    Biosens Bioelectron; 2018 Dec; 121():272-280. PubMed ID: 30223103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach.
    Bereza-Malcolm LT; Mann G; Franks AE
    ACS Synth Biol; 2015 May; 4(5):535-46. PubMed ID: 25299321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic heavy metal immunoassay based on absorbance measurement.
    Date Y; Terakado S; Sasaki K; Aota A; Matsumoto N; Shiku H; Ino K; Watanabe Y; Matsue T; Ohmura N
    Biosens Bioelectron; 2012 Mar; 33(1):106-12. PubMed ID: 22244671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Design of a Quorum Sensing-Based Biosensor for Enhanced Detection of Metal Ion in Escherichia Coli.
    Hsu CY; Chen BK; Hu RH; Chen BS
    IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):593-601. PubMed ID: 26800545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous quantification of the fluorescent responses of an ensemble of bacterial sensors.
    Kabessa Y; Korouma V; Ilan H; Yagur-Kroll S; Belkin S; Agranat AJ
    Biosens Bioelectron; 2013 Nov; 49():394-8. PubMed ID: 23800611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol.
    Hong CC; Chang PH; Lin CC; Hong CL
    Biosens Bioelectron; 2010 May; 25(9):2058-64. PubMed ID: 20206494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation and calibration of a novel GEM biosensor for specific detection of Cd
    Herath HMLPB; de Silva WRM; Dassanayake RS; Gunawardene YINS; Jayasingha JRP; Gayashan MK; Afonso LOB; de Silva KMN
    BMC Biotechnol; 2023 Dec; 23(1):52. PubMed ID: 38066557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals.
    Wan X; Volpetti F; Petrova E; French C; Maerkl SJ; Wang B
    Nat Chem Biol; 2019 May; 15(5):540-548. PubMed ID: 30911179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances and trends in innovative biosensor-based devices for heavy metal ion detection in food.
    Aihaiti A; Wang J; Zhang W; Shen M; Meng F; Li Z; Zhang Y; Ren M; Zhang M
    Compr Rev Food Sci Food Saf; 2024 Jul; 23(4):e13358. PubMed ID: 38923121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedback regulation mode of gene circuits directly affects the detection range and sensitivity of lead and mercury microbial biosensors.
    Du R; Guo M; He X; Huang K; Luo Y; Xu W
    Anal Chim Acta; 2019 Nov; 1084():85-92. PubMed ID: 31519238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mini-review on functional nucleic acids-based heavy metal ion detection.
    Zhan S; Wu Y; Wang L; Zhan X; Zhou P
    Biosens Bioelectron; 2016 Dec; 86():353-368. PubMed ID: 27395020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Microfluidic Platform for High-Throughput Screening of Small Mutant Libraries.
    Lim JW; Shin KS; Moon J; Lee SK; Kim T
    Anal Chem; 2016 May; 88(10):5234-42. PubMed ID: 27104360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic electrochemical sensing platform for
    Yuan Y; Jia H; Wang J
    Anal Methods; 2022 Oct; 14(38):3802-3813. PubMed ID: 36124994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of heavy metal ions at femtomolar levels using protein-based biosensors.
    Bontidean I; Berggren C; Johansson G; Csöregi E; Mattiasson B; Lloyd JR; Jakeman KJ; Brown NL
    Anal Chem; 1998 Oct; 70(19):4162-9. PubMed ID: 9784752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of trace heavy metal ions in water by nanostructured porous Si biosensors.
    Shtenberg G; Massad-Ivanir N; Segal E
    Analyst; 2015 Jul; 140(13):4507-14. PubMed ID: 25988196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.