These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 25461336)
21. Semi-automatic level set segmentation of liver tumors combining a spiral-scanning technique with supervised fuzzy pixel classification. Smeets D; Loeckx D; Stijnen B; De Dobbelaer B; Vandermeulen D; Suetens P Med Image Anal; 2010 Feb; 14(1):13-20. PubMed ID: 19828356 [TBL] [Abstract][Full Text] [Related]
22. Automatic construction of parts+geometry models for initializing groupwise registration. Zhang P; Cootes TF IEEE Trans Med Imaging; 2012 Feb; 31(2):341-58. PubMed ID: 21947520 [TBL] [Abstract][Full Text] [Related]
23. 3-D Active Contour Segmentation Based on Sparse Linear Combination of Training Shapes (SCoTS). Farhangi MM; Frigui H; Seow A; Amini AA IEEE Trans Med Imaging; 2017 Nov; 36(11):2239-2249. PubMed ID: 28650806 [TBL] [Abstract][Full Text] [Related]
24. Sparse appearance learning based automatic coronary sinus segmentation in CTA. Lu S; Huang X; Wang Z; Zheng Y Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):779-87. PubMed ID: 25333190 [TBL] [Abstract][Full Text] [Related]
26. Localized priors for the precise segmentation of individual vertebras from CT volume data. Shen H; Litvin A; Alvino C Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):367-75. PubMed ID: 18979768 [TBL] [Abstract][Full Text] [Related]
27. Organ segmentation with level sets using local shape and appearance priors. Kohlberger T; Uzunba MG; Alvino C; Kadir T; Slosman DO; Funka-Lea G Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):34-42. PubMed ID: 20426093 [TBL] [Abstract][Full Text] [Related]
28. Optimisation of orthopaedic implant design using statistical shape space analysis based on level sets. Kozic N; Weber S; Büchler P; Lutz C; Reimers N; González Ballester MA; Reyes M Med Image Anal; 2010 Jun; 14(3):265-75. PubMed ID: 20359938 [TBL] [Abstract][Full Text] [Related]
29. Segmentation and quantification of the aortic arch using joint 3D model-based segmentation and elastic image registration. Biesdorf A; Rohr K; Feng D; von Tengg-Kobligk H; Rengier F; Böckler D; Kauczor HU; Wörz S Med Image Anal; 2012 Aug; 16(6):1187-201. PubMed ID: 22795524 [TBL] [Abstract][Full Text] [Related]
30. A conditional statistical shape model with integrated error estimation of the conditions; application to liver segmentation in non-contrast CT images. Tomoshige S; Oost E; Shimizu A; Watanabe H; Nawano S Med Image Anal; 2014 Jan; 18(1):130-43. PubMed ID: 24184436 [TBL] [Abstract][Full Text] [Related]
31. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical shape model. Okada T; Shimada R; Hori M; Nakamoto M; Chen YW; Nakamura H; Sato Y Acad Radiol; 2008 Nov; 15(11):1390-403. PubMed ID: 18995190 [TBL] [Abstract][Full Text] [Related]
32. Iterative mesh transformation for 3D segmentation of livers with cancers in CT images. Lu D; Wu Y; Harris G; Cai W Comput Med Imaging Graph; 2015 Jul; 43():1-14. PubMed ID: 25728595 [TBL] [Abstract][Full Text] [Related]
33. Validation of bone segmentation and improved 3-D registration using contour coherency in CT data. Wang LI; Greenspan M; Ellis R IEEE Trans Med Imaging; 2006 Mar; 25(3):324-34. PubMed ID: 16524088 [TBL] [Abstract][Full Text] [Related]
34. A probabilistic framework based on hidden markov model for fiducial identification in image-guided radiation treatments. Mu Z; Fu D; Kuduvalli G IEEE Trans Med Imaging; 2008 Sep; 27(9):1288-300. PubMed ID: 18753044 [TBL] [Abstract][Full Text] [Related]
35. Shape analysis using a point-based statistical shape model built on correspondence probabilities. Hufnagel H; Pennec X; Ehrhardt J; Handels H; Ayache N Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):959-67. PubMed ID: 18051151 [TBL] [Abstract][Full Text] [Related]
36. Tumor sensitive matching flow: A variational method to detecting and segmenting perihepatic and perisplenic ovarian cancer metastases on contrast-enhanced abdominal CT. Liu J; Wang S; Linguraru MG; Yao J; Summers RM Med Image Anal; 2014 Jul; 18(5):725-39. PubMed ID: 24835180 [TBL] [Abstract][Full Text] [Related]
37. Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning. Xu Z; Burke RP; Lee CP; Baucom RB; Poulose BK; Abramson RG; Landman BA Med Image Anal; 2015 Aug; 24(1):18-27. PubMed ID: 26046403 [TBL] [Abstract][Full Text] [Related]
38. Ray-tracing based registration for HRCT images of the lungs. Busayara S; Zrimec T Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):670-7. PubMed ID: 17354830 [TBL] [Abstract][Full Text] [Related]
39. Automatic inference of articulated spine models in CT images using high-order Markov Random Fields. Kadoury S; Labelle H; Paragios N Med Image Anal; 2011 Aug; 15(4):426-37. PubMed ID: 21354853 [TBL] [Abstract][Full Text] [Related]
40. Conditional variability of statistical shape models based on surrogate variables. Blanc R; Reyes M; Seiler C; Székely G Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):84-91. PubMed ID: 20426099 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]