BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

587 related articles for article (PubMed ID: 25461391)

  • 1. Critical role of TRIF and MyD88 in Mycobacterium tuberculosis Hsp70-mediated activation of dendritic cells.
    Kim TH; Shin SJ; Park YM; Jung ID; Ryu SW; Kim DJ; Park JH; Park JH
    Cytokine; 2015 Feb; 71(2):139-44. PubMed ID: 25461391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic effect of muramyl dipeptide with heat shock protein 70 from Mycobacterium tuberculosis on immune activation.
    Kim TH; Park JH; Park YM; Ryu SW; Shin SJ; Park JH; Kim DJ
    Immunobiology; 2015 Jan; 220(1):26-31. PubMed ID: 25446399
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Kim WS; Jung ID; Kim JS; Kim HM; Kwon KW; Park YM; Shin SJ
    Front Cell Infect Microbiol; 2018; 8():95. PubMed ID: 29637049
    [No Abstract]   [Full Text] [Related]  

  • 4. Campylobacter jejuni-induced activation of dendritic cells involves cooperative signaling through Toll-like receptor 4 (TLR4)-MyD88 and TLR4-TRIF axes.
    Rathinam VA; Appledorn DM; Hoag KA; Amalfitano A; Mansfield LS
    Infect Immun; 2009 Jun; 77(6):2499-507. PubMed ID: 19332531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual signaling of MyD88 and TRIF is critical for maximal TLR4-induced dendritic cell maturation.
    Shen H; Tesar BM; Walker WE; Goldstein DR
    J Immunol; 2008 Aug; 181(3):1849-58. PubMed ID: 18641322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PKC-alpha controls MYD88-dependent TLR/IL-1R signaling and cytokine production in mouse and human dendritic cells.
    Langlet C; Springael C; Johnson J; Thomas S; Flamand V; Leitges M; Goldman M; Aksoy E; Willems F
    Eur J Immunol; 2010 Feb; 40(2):505-15. PubMed ID: 19950169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxoplasma gondii-derived heat shock protein 70 induces lethal anaphylactic reaction through activation of cytosolic phospholipase A2 and platelet-activating factor via Toll-like receptor 4/myeloid differentiation factor 88.
    Fang H; Mun HS; Kikumura A; Sayama Y; Norose K; Yano A; Aosai F
    Microbiol Immunol; 2008 Jul; 52(7):366-74. PubMed ID: 18667035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycobacterium tuberculosis RpfE promotes simultaneous Th1- and Th17-type T-cell immunity via TLR4-dependent maturation of dendritic cells.
    Choi HG; Kim WS; Back YW; Kim H; Kwon KW; Kim JS; Shin SJ; Kim HJ
    Eur J Immunol; 2015 Jul; 45(7):1957-71. PubMed ID: 25907170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IL-21 enhances SOCS gene expression and inhibits LPS-induced cytokine production in human monocyte-derived dendritic cells.
    Strengell M; Lehtonen A; Matikainen S; Julkunen I
    J Leukoc Biol; 2006 Jun; 79(6):1279-85. PubMed ID: 16551679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88.
    Fremond CM; Yeremeev V; Nicolle DM; Jacobs M; Quesniaux VF; Ryffel B
    J Clin Invest; 2004 Dec; 114(12):1790-9. PubMed ID: 15599404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual regulation of osteopontin production by TLR stimulation in dendritic cells.
    Salvi V; Scutera S; Rossi S; Zucca M; Alessandria M; Greco D; Bosisio D; Sozzani S; Musso T
    J Leukoc Biol; 2013 Jul; 94(1):147-58. PubMed ID: 23610145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endotoxin-induced maturation of MyD88-deficient dendritic cells.
    Kaisho T; Takeuchi O; Kawai T; Hoshino K; Akira S
    J Immunol; 2001 May; 166(9):5688-94. PubMed ID: 11313410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycobacterium tuberculosis RpfB drives Th1-type T cell immunity via a TLR4-dependent activation of dendritic cells.
    Kim JS; Kim WS; Choi HG; Jang B; Lee K; Park JH; Kim HJ; Cho SN; Shin SJ
    J Leukoc Biol; 2013 Oct; 94(4):733-49. PubMed ID: 23825389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyclonal activation of naïve T cells by urease deficient-recombinant BCG that produced protein complex composed of heat shock protein 70, CysO and major membrane protein-II.
    Tsukamoto Y; Maeda Y; Tamura T; Mukai T; Makino M
    BMC Infect Dis; 2014 Apr; 14():179. PubMed ID: 24690183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential requirements of MyD88 and TRIF pathways in TLR4-mediated immune responses in murine B cells.
    Yanagibashi T; Nagai Y; Watanabe Y; Ikutani M; Hirai Y; Takatsu K
    Immunol Lett; 2015 Jan; 163(1):22-31. PubMed ID: 25448706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Papillomavirus-like particles stimulate murine bone marrow-derived dendritic cells to produce alpha interferon and Th1 immune responses via MyD88.
    Yang R; Murillo FM; Cui H; Blosser R; Uematsu S; Takeda K; Akira S; Viscidi RP; Roden RB
    J Virol; 2004 Oct; 78(20):11152-60. PubMed ID: 15452235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MyD88 and TRIF synergistic interaction is required for TH1-cell polarization with a synthetic TLR4 agonist adjuvant.
    Orr MT; Duthie MS; Windish HP; Lucas EA; Guderian JA; Hudson TE; Shaverdian N; O'Donnell J; Desbien AL; Reed SG; Coler RN
    Eur J Immunol; 2013 Sep; 43(9):2398-408. PubMed ID: 23716300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TLR4-mediated activation of dendritic cells by the heat shock protein DnaK from Francisella tularensis.
    Ashtekar AR; Zhang P; Katz J; Deivanayagam CC; Rallabhandi P; Vogel SN; Michalek SM
    J Leukoc Biol; 2008 Dec; 84(6):1434-46. PubMed ID: 18708593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9.
    Hölscher C; Reiling N; Schaible UE; Hölscher A; Bathmann C; Korbel D; Lenz I; Sonntag T; Kröger S; Akira S; Mossmann H; Kirschning CJ; Wagner H; Freudenberg M; Ehlers S
    Eur J Immunol; 2008 Mar; 38(3):680-94. PubMed ID: 18266299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a TLR4- and TRIF-dependent activation program of dendritic cells.
    Weighardt H; Jusek G; Mages J; Lang R; Hoebe K; Beutler B; Holzmann B
    Eur J Immunol; 2004 Feb; 34(2):558-64. PubMed ID: 14768061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.