These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2546142)

  • 1. Kinetics of the aspartyl transpeptidation of daptomycin, a novel lipopeptide antibiotic.
    Kirsch LE; Molloy RM; Debono M; Baker P; Farid KZ
    Pharm Res; 1989 May; 6(5):387-93. PubMed ID: 2546142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide.
    Oliyai C; Borchardt RT
    Pharm Res; 1993 Jan; 10(1):95-102. PubMed ID: 8430066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the reactions between daptomycin and glyceraldehyde.
    Muangsiri W; Kearney WR; Teesch LM; Kirsch LE
    Int J Pharm; 2005 Jan; 289(1-2):133-50. PubMed ID: 15652206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary electrophoretic study of the degradation pathways and kinetics of the aspartyl model tetrapeptide Gly-Phe-Asp-GlyOH in alkaline solution.
    Brückner C; Imhof D; Scriba GK
    J Pharm Biomed Anal; 2013 Mar; 76():96-103. PubMed ID: 23298912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation kinetics of an aspartyl-tripeptide-derived diketopiperazine under forced conditions.
    Brückner C; Fahr A; Imhof D; Scriba GK
    J Pharm Sci; 2012 Nov; 101(11):4178-90. PubMed ID: 22899465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of aspartic acid isomerization and enantiomerization in model aspartyl tripeptides under forced conditions.
    Conrad U; Fahr A; Scriba GK
    J Pharm Sci; 2010 Oct; 99(10):4162-73. PubMed ID: 20737625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The kinetics of the alkaline degradation of daptomycin.
    Muangsiri W; Kirsch LE
    J Pharm Sci; 2001 Aug; 90(8):1066-75. PubMed ID: 11536211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of aspartyl peptide degradation products by high-performance liquid chromatography and high-performance liquid chromatography-mass spectrometry.
    De Boni S; Oberthür C; Hamburger M; Scriba GK
    J Chromatogr A; 2004 Jan; 1022(1-2):95-102. PubMed ID: 14753775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary electrophoresis analysis of hydrolysis, isomerization and enantiomerization of aspartyl model tripeptides in acidic and alkaline solution.
    De Boni S; Scriba GK
    J Pharm Biomed Anal; 2007 Jan; 43(1):49-56. PubMed ID: 16846713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimated pKa values for specific amino acid residues in daptomycin.
    Qiu J; Yu L; Kirsch LE
    J Pharm Sci; 2011 Oct; 100(10):4225-33. PubMed ID: 21547914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of degradation products of aspartyl tripeptides by capillary electrophoresis-tandem mass spectrometry.
    De Boni S; Neusüss C; Pelzing M; Scriba GK
    Electrophoresis; 2003 Mar; 24(5):874-82. PubMed ID: 12627450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical pathways of peptide degradation. VI. Effect of the primary sequence on the pathways of degradation of aspartyl residues in model hexapeptides.
    Oliyai C; Borchardt RT
    Pharm Res; 1994 May; 11(5):751-8. PubMed ID: 8058648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting cleavage at aspartic residues in model decapeptides.
    Li N; Fort F; Kessler K; Wang W
    J Pharm Biomed Anal; 2009 Aug; 50(1):73-8. PubMed ID: 19395214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the mechanism of aspartic acid cleavage and glutamine deamidation in the acidic degradation of glucagon.
    Joshi AB; Sawai M; Kearney WR; Kirsch LE
    J Pharm Sci; 2005 Sep; 94(9):1912-27. PubMed ID: 16052557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of water and polymer content on covalent amide-linked adduct formation in peptide-containing amorphous lyophiles.
    DeHart MP; Anderson BD
    J Pharm Sci; 2012 Sep; 101(9):3142-56. PubMed ID: 22437444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanism-based kinetic analysis of succinimide-mediated deamidation, racemization, and covalent adduct formation in a model peptide in amorphous lyophiles.
    Dehart MP; Anderson BD
    J Pharm Sci; 2012 Sep; 101(9):3096-109. PubMed ID: 22271437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance liquid chromatographic monitoring of transpeptidation reactions in analogues of gonadotropin releasing hormone containing aspartic acid derivatives in position six.
    Vadász Z; Seprödi J; Erchegyi J; Teplán I; Schön I
    J Chromatogr; 1989 Aug; 477(2):377-85. PubMed ID: 2681243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibody-catalyzed rearrangement of the peptide bond.
    Gibbs RA; Taylor S; Benkovic SJ
    Science; 1992 Oct; 258(5083):803-5. PubMed ID: 1439788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of rate constants for β-linkage isomerization of three specific aspartyl residues in recombinant human αA-crystallin protein by reversed-phase HPLC.
    Sadakane Y; Fujii N; Nakagomi K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Nov; 879(29):3240-6. PubMed ID: 21470922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neighboring side chain effects on asparaginyl and aspartyl degradation: an ab initio study of the relationship between peptide conformation and backbone NH acidity.
    Radkiewicz JL; Zipse H; Clarke S; Houk KN
    J Am Chem Soc; 2001 Apr; 123(15):3499-506. PubMed ID: 11472122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.