These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25461591)

  • 1. Imaging of tissue sections with very slow electrons.
    Frank L; Nebesářová J; Vancová M; Paták A; Müllerová I
    Ultramicroscopy; 2015 Jan; 148():146-150. PubMed ID: 25461591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cutting of ultrathin sections with the thickness less than 20 nm from biological specimens embedded in resin blocks.
    Nebesářová J; Hozák P; Frank L; Štěpan P; Vancová M
    Microsc Res Tech; 2016 Jun; 79(6):512-7. PubMed ID: 27030160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative STEM imaging of electron beam induced mass loss of epoxy resin sections.
    Skoupy R; Nebesarova J; Slouf M; Krzyzanek V
    Ultramicroscopy; 2019 Jul; 202():44-50. PubMed ID: 30953993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-phase steel structure visualized by extremely slow electrons.
    Mikmeková Š; Yamada K; Noro H
    Microscopy (Oxf); 2015 Dec; 64(6):437-43. PubMed ID: 26497974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging biological samples by integrated differential phase contrast (iDPC) STEM technique.
    Li X; Lazić I; Huang X; Wirix M; Wang L; Deng Y; Niu T; Wu D; Yu L; Sun F
    J Struct Biol; 2022 Mar; 214(1):107837. PubMed ID: 35104612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging thin and thick sections of biological tissue with the secondary electron detector in a field-emission scanning electron microscope.
    Wergin WP; Yaklich RW; Roy S; Joy DC; Erbe EF; Murphy CA; Pooley CD
    Scanning; 1997 Sep; 19(6):386-95. PubMed ID: 9304866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography.
    Murata K; Esaki M; Ogura T; Arai S; Yamamoto Y; Tanaka N
    Ultramicroscopy; 2014 Nov; 146():39-45. PubMed ID: 24935612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observations of unstained biological specimens using a low-energy, high-resolution STEM.
    Takaoka A; Hasegawa T
    J Electron Microsc (Tokyo); 2006 Jun; 55(3):157-63. PubMed ID: 16809349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of scanning transmission electron microscopy to the study of biological structure.
    Engel A; Colliex C
    Curr Opin Biotechnol; 1993 Aug; 4(4):403-11. PubMed ID: 7763970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scanning electron microscopy of hepatic ultrastructure: secondary, backscattered, and transmitted electron imaging.
    Miyai K; Abraham JL; Linthicum DS; Wagner RM
    Lab Invest; 1976 Oct; 35(4):369-76. PubMed ID: 979166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning Transmission Electron Microscopy in a Scanning Electron Microscope for the High-Throughput Imaging of Biological Assemblies.
    Parker KA; Ribet S; Kimmel BR; Dos Reis R; Mrksich M; Dravid VP
    Biomacromolecules; 2022 Aug; 23(8):3235-3242. PubMed ID: 35881504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and application of STEM for the biological sciences.
    Sousa AA; Leapman RD
    Ultramicroscopy; 2012 Dec; 123():38-49. PubMed ID: 22749213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative dark-field mass analysis of ultrathin cryosections in the field-emission scanning transmission electron microscope.
    Andrews SB; Buchanan RA; Leapman RD
    Scanning Microsc Suppl; 1994; 8():13-23; discussion 23-4. PubMed ID: 7638482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4D electron microscopy: principles and applications.
    Flannigan DJ; Zewail AH
    Acc Chem Res; 2012 Oct; 45(10):1828-39. PubMed ID: 22967215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and Observation of Thick Biological Samples by Scanning Transmission Electron Tomography.
    Trépout S; Bastin P; Marco S
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms.
    Inada H; Su D; Egerton RF; Konno M; Wu L; Ciston J; Wall J; Zhu Y
    Ultramicroscopy; 2011 Jun; 111(7):865-76. PubMed ID: 21185651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmission imaging on a scintillator in a scanning electron microscope.
    Zuidema W; Kruit P
    Ultramicroscopy; 2020 Nov; 218():113055. PubMed ID: 32731131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field-Emission Scanning Electron Microscope as a Tool for Large-Area and Large-Volume Ultrastructural Studies.
    Lewczuk B; Szyryńska N
    Animals (Basel); 2021 Nov; 11(12):. PubMed ID: 34944167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation on backscattered electron image (BEI) of a scanning electron microscope (SEM) in semi-thin sections prepared for light microscopy.
    Nagato Y; Kushida T; Kushida H; Ogura K
    Tokai J Exp Clin Med; 1983 May; 8(2):167-74. PubMed ID: 6419405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning electron microscopy at macromolecular resolution in low energy mode on biological specimens coated with ultra thin metal films.
    Peters KR
    Scan Electron Microsc; 1979; (2):133-48. PubMed ID: 392703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.