BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 25461688)

  • 1. 3D in vitro modeling of the central nervous system.
    Hopkins AM; DeSimone E; Chwalek K; Kaplan DL
    Prog Neurobiol; 2015 Feb; 125():1-25. PubMed ID: 25461688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacing cells with microengineered scaffolds for neural tissue reconstruction.
    Accardo A; Cirillo C; Lionnet S; Vieu C; Loubinoux I
    Brain Res Bull; 2019 Oct; 152():202-211. PubMed ID: 31348979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycosaminoglycans' for brain health: Harnessing glycosaminoglycan based biomaterials for treating central nervous system diseases and in-vitro modeling.
    Evans AD; Pournoori N; Saksala E; Oommen OP
    Biomaterials; 2024 Sep; 309():122629. PubMed ID: 38797120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilayered extracellular matrix derived scaffolds with anisotropic pore architecture guide tissue organization during osteochondral defect repair.
    Browe DC; Díaz-Payno PJ; Freeman FE; Schipani R; Burdis R; Ahern DP; Nulty JM; Guler S; Randall LD; Buckley CT; Brama PAJ; Kelly DJ
    Acta Biomater; 2022 Apr; 143():266-281. PubMed ID: 35278686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decellularized tissues as platforms for in vitro modeling of healthy and diseased tissues.
    McCrary MW; Bousalis D; Mobini S; Song YH; Schmidt CE
    Acta Biomater; 2020 Jul; 111():1-19. PubMed ID: 32464269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-specific parameters for the design of ECM-mimetic biomaterials.
    Tonti OR; Larson H; Lipp SN; Luetkemeyer CM; Makam M; Vargas D; Wilcox SM; Calve S
    Acta Biomater; 2021 Sep; 132():83-102. PubMed ID: 33878474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review.
    Dzobo K; Motaung KSCM; Adesida A
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering.
    Lu T; Li Y; Chen T
    Int J Nanomedicine; 2013; 8():337-50. PubMed ID: 23345979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogels derived from central nervous system extracellular matrix.
    Medberry CJ; Crapo PM; Siu BF; Carruthers CA; Wolf MT; Nagarkar SP; Agrawal V; Jones KE; Kelly J; Johnson SA; Velankar SS; Watkins SC; Modo M; Badylak SF
    Biomaterials; 2013 Jan; 34(4):1033-40. PubMed ID: 23158935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biologic scaffolds composed of central nervous system extracellular matrix.
    Crapo PM; Medberry CJ; Reing JE; Tottey S; van der Merwe Y; Jones KE; Badylak SF
    Biomaterials; 2012 May; 33(13):3539-47. PubMed ID: 22341938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfusion-decellularization of human ear grafts enables ECM-based scaffolds for auricular vascularized composite tissue engineering.
    Duisit J; Amiel H; Wüthrich T; Taddeo A; Dedriche A; Destoop V; Pardoen T; Bouzin C; Joris V; Magee D; Vögelin E; Harriman D; Dessy C; Orlando G; Behets C; Rieben R; Gianello P; Lengelé B
    Acta Biomater; 2018 Jun; 73():339-354. PubMed ID: 29654989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Manufacture and Characterization of Biomimetic, Biomaterial-Based Scaffolds for Studying Physicochemical Interactions of Neural Cells in 3D Environments.
    O'Connor C; Woods I; Hibbitts A; Dervan A; O'Brien FJ
    Curr Protoc; 2023 Feb; 3(2):e688. PubMed ID: 36811383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Biomaterials with Spatiotemporal Control for Regenerative Tissue Engineering.
    Mendenhall J
    Acc Chem Res; 2023 Jun; 56(11):1313-1319. PubMed ID: 37103937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity.
    Sanchez-Rubio A; Jayawarna V; Maxwell E; Dalby MJ; Salmeron-Sanchez M
    Adv Healthc Mater; 2023 Jul; 12(17):e2202110. PubMed ID: 36938891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering three-dimensional microenvironments towards in vitro disease models of the central nervous system.
    Yildirimer L; Zhang Q; Kuang S; Cheung CJ; Chu KA; He Y; Yang M; Zhao X
    Biofabrication; 2019 Jun; 11(3):032003. PubMed ID: 30965297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Bioprinting of Neural Tissues.
    Cadena M; Ning L; King A; Hwang B; Jin L; Serpooshan V; Sloan SA
    Adv Healthc Mater; 2021 Aug; 10(15):e2001600. PubMed ID: 33200587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D bioprinting complex models of cancer.
    Sharma R; Restan Perez M; da Silva VA; Thomsen J; Bhardwaj L; Andrade TAM; Alhussan A; Willerth SM
    Biomater Sci; 2023 May; 11(10):3414-3430. PubMed ID: 37000528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D scaffolds for brain tissue regeneration: architectural challenges.
    Mahumane GD; Kumar P; du Toit LC; Choonara YE; Pillay V
    Biomater Sci; 2018 Oct; 6(11):2812-2837. PubMed ID: 30255869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering.
    Crapo PM; Tottey S; Slivka PF; Badylak SF
    Tissue Eng Part A; 2014 Jan; 20(1-2):313-23. PubMed ID: 24004192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering.
    Arulmoli J; Wright HJ; Phan DTT; Sheth U; Que RA; Botten GA; Keating M; Botvinick EL; Pathak MM; Zarembinski TI; Yanni DS; Razorenova OV; Hughes CCW; Flanagan LA
    Acta Biomater; 2016 Oct; 43():122-138. PubMed ID: 27475528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.