These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 25461721)

  • 21. Regulation of the cardiac Na+ channel NaV1.5 by post-translational modifications.
    Marionneau C; Abriel H
    J Mol Cell Cardiol; 2015 May; 82():36-47. PubMed ID: 25748040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histone ADP-ribosylation in DNA repair, replication and transcription.
    Messner S; Hottiger MO
    Trends Cell Biol; 2011 Sep; 21(9):534-42. PubMed ID: 21741840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The methylproteome and the intracellular methylation network.
    Erce MA; Pang CN; Hart-Smith G; Wilkins MR
    Proteomics; 2012 Feb; 12(4-5):564-86. PubMed ID: 22246820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional analysis of proteins and protein species using shotgun proteomics and linear mathematics.
    Hoehenwarter W; Chen Y; Recuenco-Munoz L; Wienkoop S; Weckwerth W
    Amino Acids; 2011 Jul; 41(2):329-41. PubMed ID: 20602127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decoding signalling networks by mass spectrometry-based proteomics.
    Choudhary C; Mann M
    Nat Rev Mol Cell Biol; 2010 Jun; 11(6):427-39. PubMed ID: 20461098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The human sperm proteome 2.0: An integrated resource for studying sperm functions at the level of posttranslational modification.
    Wang Y; Wan J; Ling X; Liu M; Zhou T
    Proteomics; 2016 Oct; 16(19):2597-2601. PubMed ID: 27546384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assays for Posttranslational Modifications of Intermediate Filament Proteins.
    Snider NT; Omary MB
    Methods Enzymol; 2016; 568():113-38. PubMed ID: 26795469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of various endogenous and artefact modifications on large-scale proteomics analysis.
    Bienvenut WV; Sumpton D; Lilla S; Martinez A; Meinnel T; Giglione C
    Rapid Commun Mass Spectrom; 2013 Feb; 27(3):443-50. PubMed ID: 23280976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Urinary proteins with post-translational modifications.
    Liu L; Liu X
    Adv Exp Med Biol; 2015; 845():59-65. PubMed ID: 25355569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomics beyond trypsin.
    Tsiatsiani L; Heck AJ
    FEBS J; 2015 Jul; 282(14):2612-26. PubMed ID: 25823410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Utilities of Chemical Reactions and Molecular Tools for O-GlcNAc Proteomic Studies.
    Kim EJ
    Chembiochem; 2015 Jul; 16(10):1397-409. PubMed ID: 26096757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein synthesis, posttranslational modifications, and aging.
    Rattan SI; Derventzi A; Clark BF
    Ann N Y Acad Sci; 1992 Nov; 663():48-62. PubMed ID: 1482093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Site-Specific Proteomic Mapping Identifies Selectively Modified Regulatory Cysteine Residues in Functionally Distinct Protein Networks.
    Gould NS; Evans P; Martínez-Acedo P; Marino SM; Gladyshev VN; Carroll KS; Ischiropoulos H
    Chem Biol; 2015 Jul; 22(7):965-75. PubMed ID: 26165157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications.
    Chaudhuri R; Sadrieh A; Hoffman NJ; Parker BL; Humphrey SJ; Stöckli J; Hill AP; James DE; Yang JY
    BMC Genomics; 2015 Aug; 16(1):617. PubMed ID: 26283093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using the scan-x Web site to predict protein post-translational modifications.
    Chou MF; Schwartz D
    Curr Protoc Bioinformatics; 2011 Dec; Chapter 13():13.16.1-13.16.8. PubMed ID: 22161568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteome screens for Cys residues oxidation: the redoxome.
    Chiappetta G; Ndiaye S; Igbaria A; Kumar C; Vinh J; Toledano MB
    Methods Enzymol; 2010; 473():199-216. PubMed ID: 20513479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sample Preparation Protocols for Protein Abundance, Acetylome, and Phosphoproteome Profiling of Plant Tissues.
    Song G; McReynolds MR; Walley JW
    Methods Mol Biol; 2017; 1610():123-133. PubMed ID: 28439861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox proteomics for the assessment of redox-related posttranslational regulation in plants.
    Mock HP; Dietz KJ
    Biochim Biophys Acta; 2016 Aug; 1864(8):967-73. PubMed ID: 26784836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fishing the PTM proteome with chemical approaches using functional solid phases.
    Zhang Y; Zhang C; Jiang H; Yang P; Lu H
    Chem Soc Rev; 2015 Nov; 44(22):8260-87. PubMed ID: 26258179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.