These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Detection of mutations and large rearrangements of the low-density lipoprotein receptor gene in Taiwanese patients with familial hypercholesterolemia. Chiou KR; Charng MJ Am J Cardiol; 2010 Jun; 105(12):1752-8. PubMed ID: 20538126 [TBL] [Abstract][Full Text] [Related]
4. A DNA microarray for the detection of point mutations and copy number variation causing familial hypercholesterolemia in Europe. Stef MA; Palacios L; Olano-Martín E; Foe-A-Man C; van de Kerkhof L; Klaaijsen LN; Molano A; Schuurman EJ; Tejedor D; Defesche JC J Mol Diagn; 2013 May; 15(3):362-72. PubMed ID: 23537714 [TBL] [Abstract][Full Text] [Related]
5. Genetic analysis of familial hypercholesterolaemia in Western Australia. Hooper AJ; Nguyen LT; Burnett JR; Bates TR; Bell DA; Redgrave TG; Watts GF; van Bockxmeer FM Atherosclerosis; 2012 Oct; 224(2):430-4. PubMed ID: 22883975 [TBL] [Abstract][Full Text] [Related]
6. A novel type of familial hypercholesterolemia: double heterozygous mutations in LDL receptor and LDL receptor adaptor protein 1 gene. Tada H; Kawashiri MA; Ohtani R; Noguchi T; Nakanishi C; Konno T; Hayashi K; Nohara A; Inazu A; Kobayashi J; Mabuchi H; Yamagishi M Atherosclerosis; 2011 Dec; 219(2):663-6. PubMed ID: 21872251 [TBL] [Abstract][Full Text] [Related]
7. A novel mutation in proprotein convertase subtilisin/kexin type 9 gene leads to familial hypercholesterolemia in a Chinese family. Lin J; Wang LY; Liu S; Wang XM; Yong Q; Yang Y; DU LP; Pan XD; Wang X; Jiang ZS Chin Med J (Engl); 2010 May; 123(9):1133-8. PubMed ID: 20529551 [TBL] [Abstract][Full Text] [Related]
8. The genetic spectrum of familial hypercholesterolemia in south-eastern Poland. Sharifi M; Walus-Miarka M; Idzior-Waluś B; Malecki MT; Sanak M; Whittall R; Li KW; Futema M; Humphries SE Metabolism; 2016 Mar; 65(3):48-53. PubMed ID: 26892515 [TBL] [Abstract][Full Text] [Related]
9. Effect of mutations in LDLR and PCSK9 genes on phenotypic variability in Tunisian familial hypercholesterolemia patients. Slimani A; Jelassi A; Jguirim I; Najah M; Rebhi L; Omezzine A; Maatouk F; Hamda KB; Kacem M; Rabès JP; Abifadel M; Boileau C; Rouis M; Slimane MN; Varret M Atherosclerosis; 2012 May; 222(1):158-66. PubMed ID: 22417841 [TBL] [Abstract][Full Text] [Related]
10. PCSK9 R46L, lower LDL, and cardiovascular disease risk in familial hypercholesterolemia: a cross-sectional cohort study. Saavedra YG; Dufour R; Davignon J; Baass A Arterioscler Thromb Vasc Biol; 2014 Dec; 34(12):2700-5. PubMed ID: 25278291 [TBL] [Abstract][Full Text] [Related]
11. Genetic heterogeneity of autosomal dominant hypercholesterolemia in Mexico. Robles-Osorio L; Huerta-Zepeda A; Ordóñez ML; Canizales-Quinteros S; Díaz-Villaseñor A; Gutiérrez-Aguilar R; Riba L; Huertas-Vázquez A; Rodríguez-Torres M; Gómez-Díaz RA; Salinas S; Ongay-Larios L; Codiz-Huerta G; Mora-Cabrera M; Mehta R; Gómez Pérez FJ; Rull JA; Rabès JP; Tusié-Luna MT; Durán-Vargas S; Aguilar-Salinas CA Arch Med Res; 2006 Jan; 37(1):102-8. PubMed ID: 16314194 [TBL] [Abstract][Full Text] [Related]
12. The genetic spectrum of familial hypercholesterolemia in Pakistan. Ahmed W; Whittall R; Riaz M; Ajmal M; Sadeque A; Ayub H; Qamar R; Humphries SE Clin Chim Acta; 2013 Jun; 421():219-25. PubMed ID: 23535506 [TBL] [Abstract][Full Text] [Related]
13. Serum levels of proprotein convertase subtilisin/kexin type 9 in subjects with familial hypercholesterolemia indicate that proprotein convertase subtilisin/kexin type 9 is cleared from plasma by low-density lipoprotein receptor-independent pathways. Cameron J; Bogsrud MP; Tveten K; Strøm TB; Holven K; Berge KE; Leren TP Transl Res; 2012 Aug; 160(2):125-30. PubMed ID: 22683370 [TBL] [Abstract][Full Text] [Related]
14. Identification and functional characterization of LDLR mutations in familial hypercholesterolemia patients from Southern Italy. Romano M; Di Taranto MD; D'Agostino MN; Marotta G; Gentile M; Abate G; Mirabelli P; Di Noto R; Del Vecchio L; Rubba P; Fortunato G Atherosclerosis; 2010 Jun; 210(2):493-6. PubMed ID: 20045108 [TBL] [Abstract][Full Text] [Related]
18. Advances in genetics show the need for extending screening strategies for autosomal dominant hypercholesterolaemia. Motazacker MM; Pirruccello J; Huijgen R; Do R; Gabriel S; Peter J; Kuivenhoven JA; Defesche JC; Kastelein JJ; Hovingh GK; Zelcer N; Kathiresan S; Fouchier SW Eur Heart J; 2012 Jun; 33(11):1360-6. PubMed ID: 22408029 [TBL] [Abstract][Full Text] [Related]
19. Molecular testing for familial hypercholesterolaemia-associated mutations in a UK-based cohort: development of an NGS-based method and comparison with multiplex polymerase chain reaction and oligonucleotide arrays. Reiman A; Pandey S; Lloyd KL; Dyer N; Khan M; Crockard M; Latten MJ; Watson TL; Cree IA; Grammatopoulos DK Ann Clin Biochem; 2016 Nov; 53(6):654-662. PubMed ID: 26748104 [TBL] [Abstract][Full Text] [Related]
20. Recent advances in the understanding and care of familial hypercholesterolaemia: significance of the biology and therapeutic regulation of proprotein convertase subtilisin/kexin type 9. Page MM; Stefanutti C; Sniderman A; Watts GF Clin Sci (Lond); 2015 Jul; 129(1):63-79. PubMed ID: 25881720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]