These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 25461969)
1. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. von Dassow P; John U; Ogata H; Probert I; Bendif el M; Kegel JU; Audic S; Wincker P; Da Silva C; Claverie JM; Doney S; Glover DM; Flores DM; Herrera Y; Lescot M; Garet-Delmas MJ; de Vargas C ISME J; 2015 Jun; 9(6):1365-77. PubMed ID: 25461969 [TBL] [Abstract][Full Text] [Related]
2. Rapid diversification underlying the global dominance of a cosmopolitan phytoplankton. Bendif EM; Probert I; Archontikis OA; Young JR; Beaufort L; Rickaby RE; Filatov D ISME J; 2023 Apr; 17(4):630-640. PubMed ID: 36747097 [TBL] [Abstract][Full Text] [Related]
3. Morphological switch to a resistant subpopulation in response to viral infection in the bloom-forming coccolithophore Emiliania huxleyi. Frada MJ; Rosenwasser S; Ben-Dor S; Shemi A; Sabanay H; Vardi A PLoS Pathog; 2017 Dec; 13(12):e1006775. PubMed ID: 29244854 [TBL] [Abstract][Full Text] [Related]
4. Gephyrocapsa huxleyi (Emiliania huxleyi) as a model system for coccolithophore biology. Wheeler GL; Sturm D; Langer G J Phycol; 2023 Dec; 59(6):1123-1129. PubMed ID: 37983837 [TBL] [Abstract][Full Text] [Related]
5. Pan genome of the phytoplankton Emiliania underpins its global distribution. Read BA; Kegel J; Klute MJ; Kuo A; Lefebvre SC; Maumus F; Mayer C; Miller J; Monier A; Salamov A; Young J; Aguilar M; Claverie JM; Frickenhaus S; Gonzalez K; Herman EK; Lin YC; Napier J; Ogata H; Sarno AF; Shmutz J; Schroeder D; de Vargas C; Verret F; von Dassow P; Valentin K; Van de Peer Y; Wheeler G; ; Dacks JB; Delwiche CF; Dyhrman ST; Glöckner G; John U; Richards T; Worden AZ; Zhang X; Grigoriev IV Nature; 2013 Jul; 499(7457):209-13. PubMed ID: 23760476 [TBL] [Abstract][Full Text] [Related]
6. In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta). Frada MJ; Bidle KD; Probert I; de Vargas C Environ Microbiol; 2012 Jun; 14(6):1558-69. PubMed ID: 22507290 [TBL] [Abstract][Full Text] [Related]
7. Resolving the Microalgal Gene Landscape at the Strain Level: a Novel Hybrid Transcriptome of Sperfeld M; Yahalomi D; Segev E Appl Environ Microbiol; 2022 Jan; 88(2):e0141821. PubMed ID: 34757817 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional response of Emiliania huxleyi under changing nutrient environments in the North Pacific Subtropical Gyre. Alexander H; Rouco M; Haley ST; Dyhrman ST Environ Microbiol; 2020 May; 22(5):1847-1860. PubMed ID: 32064744 [TBL] [Abstract][Full Text] [Related]
9. Phenotypic diversity of diploid and haploid Emiliania huxleyi cells and of cells in different growth phases revealed by comparative metabolomics. Mausz MA; Pohnert G J Plant Physiol; 2015 Jan; 172():137-48. PubMed ID: 25304662 [TBL] [Abstract][Full Text] [Related]
11. Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi. Rokitta SD; John U; Rost B PLoS One; 2012; 7(12):e52212. PubMed ID: 23300616 [TBL] [Abstract][Full Text] [Related]
12. Phenotypic Variability in the Coccolithophore Emiliania huxleyi. Blanco-Ameijeiras S; Lebrato M; Stoll HM; Iglesias-Rodriguez D; Müller MN; Méndez-Vicente A; Oschlies A PLoS One; 2016; 11(6):e0157697. PubMed ID: 27348427 [TBL] [Abstract][Full Text] [Related]
13. An Efficient Method for the Plating of Haploid and Diploid Emiliania huxleyi on Solid Medium Skeffington AW; Grimm A; Schönefeld S; Petersen K; Scheffel A J Phycol; 2020 Feb; 56(1):238-242. PubMed ID: 31657459 [TBL] [Abstract][Full Text] [Related]
14. Ocean acidification has little effect on the biochemical composition of the coccolithophore Emiliania huxleyi. Heidenreich E; Wördenweber R; Kirschhöfer F; Nusser M; Friedrich F; Fahl K; Kruse O; Rost B; Franzreb M; Brenner-Weiß G; Rokitta S PLoS One; 2019; 14(7):e0218564. PubMed ID: 31291290 [TBL] [Abstract][Full Text] [Related]
15. Differences in the sensitivity to Cu and ligand production of coastal vs offshore strains of Emiliania huxleyi. Echeveste P; Croot P; von Dassow P Sci Total Environ; 2018 Jun; 625():1673-1680. PubMed ID: 29056389 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the Small RNA Transcriptome of the Marine Coccolithophorid, Emiliania huxleyi. Zhang X; Gamarra J; Castro S; Carrasco E; Hernandez A; Mock T; Hadaegh AR; Read BA PLoS One; 2016; 11(4):e0154279. PubMed ID: 27101007 [TBL] [Abstract][Full Text] [Related]
17. Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Bendif EM; Nevado B; Wong ELY; Hagino K; Probert I; Young JR; Rickaby REM; Filatov DA Nat Commun; 2019 Sep; 10(1):4234. PubMed ID: 31530807 [TBL] [Abstract][Full Text] [Related]
18. Globally Important Haptophyte Algae Use Exogenous Pyrimidine Compounds More Efficiently than Thiamin. Gutowska MA; Shome B; Sudek S; McRose DL; Hamilton M; Giovannoni SJ; Begley TP; Worden AZ mBio; 2017 Oct; 8(5):. PubMed ID: 29018119 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. von Dassow P; Ogata H; Probert I; Wincker P; Da Silva C; Audic S; Claverie JM; de Vargas C Genome Biol; 2009; 10(10):R114. PubMed ID: 19832986 [TBL] [Abstract][Full Text] [Related]
20. Detection of Phagotrophy in the Marine Phytoplankton Group of the Coccolithophores (Calcihaptophycidae, Haptophyta) During Nutrient-replete and Phosphate-limited Growth. Avrahami Y; Frada MJ J Phycol; 2020 Aug; 56(4):1103-1108. PubMed ID: 32233088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]