These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25462077)

  • 1. Ocean acidification modulates the response of two Arctic kelps to ultraviolet radiation.
    Gordillo FJ; Aguilera J; Wiencke C; Jiménez C
    J Plant Physiol; 2015 Jan; 173():41-50. PubMed ID: 25462077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased pCO
    Olischläger M; Iñiguez C; Koch K; Wiencke C; Gordillo FJ
    Planta; 2017 Jan; 245(1):119-136. PubMed ID: 27654952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of the kelp Saccharina latissima (Phaeophyceae) to the warming Arctic: from physiology to transcriptomics.
    Li H; Monteiro C; Heinrich S; Bartsch I; Valentin K; Harms L; Glöckner G; Corre E; Bischof K
    Physiol Plant; 2020 Jan; 168(1):5-26. PubMed ID: 31267544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated CO
    Zhang D; Xu J; Bao M; Yan D; Beer S; Beardall J; Gao K
    J Photochem Photobiol B; 2020 Dec; 213():112074. PubMed ID: 33152637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae).
    Fredersdorf J; Müller R; Becker S; Wiencke C; Bischof K
    Oecologia; 2009 Jun; 160(3):483-92. PubMed ID: 19330357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of short-term acclimation to UV radiation in marine diatoms.
    Fouqueray M; Mouget JL; Morant-Manceau A; Tremblin G
    J Photochem Photobiol B; 2007 Nov; 89(1):1-8. PubMed ID: 17766142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming.
    Kang EJ; Han AR; Kim JH; Kim IN; Lee S; Min JO; Nam BR; Choi YJ; Edwards MS; Diaz-Pulido G; Kim C
    Sci Total Environ; 2021 May; 769():144443. PubMed ID: 33493906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of CO2 and seawater acidification on the early stages of Saccharina japonica development.
    Xu D; Wang D; Li B; Fan X; Zhang XW; Ye NH; Wang Y; Mou S; Zhuang Z
    Environ Sci Technol; 2015 Mar; 49(6):3548-56. PubMed ID: 25695307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of UV radiation and inorganic carbon supply in the inhibition of photosynthesis: spectral and temporal responses of two marine picoplankters.
    Sobrino C; Neale PJ; Lubián LM
    Photochem Photobiol; 2005; 81(2):384-93. PubMed ID: 15538899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure to ultraviolet radiation delays photosynthetic recovery in Arctic kelp zoospores.
    Roleda MY; Hanelt D; Wiencke C
    Photosynth Res; 2006 Jun; 88(3):311-22. PubMed ID: 16758269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inorganic carbon physiology underpins macroalgal responses to elevated CO
    Cornwall CE; Revill AT; Hall-Spencer JM; Milazzo M; Raven JA; Hurd CL
    Sci Rep; 2017 Apr; 7():46297. PubMed ID: 28417970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocean acidification significantly alters the trace element content of the kelp, Saccharina latissima.
    Schultz J; Berry Gobler DL; Young CS; Perez A; Doall MH; Gobler CJ
    Mar Pollut Bull; 2024 May; 202():116289. PubMed ID: 38564822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing marine macrophyte capacity to locally ameliorate ocean acidification under variable light and flow regimes: Insights from an experimental approach.
    Ricart AM; Honisch B; Fachon E; Hunt CW; Salisbury J; Arnold SN; Price NN
    PLoS One; 2023; 18(10):e0288548. PubMed ID: 37819926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthetic response of Arctic kelp zoospores exposed to radiation and thermal stress.
    Roleda MY
    Photochem Photobiol Sci; 2009 Sep; 8(9):1302-12. PubMed ID: 19707618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated CO
    Zang S; Xu Z; Yan F; Wu H
    J Photochem Photobiol B; 2022 Nov; 236():112572. PubMed ID: 36166913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High nutrient availability modulates photosynthetic performance and biochemical components of the economically important marine macroalga Kappaphycus alvarezii (Rhodophyta) in response to ocean acidification.
    Long C; Zhang Y; Wei Z; Long L
    Mar Environ Res; 2024 Feb; 194():106339. PubMed ID: 38182500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse responses of sporophytic photochemical efficiency and gametophytic growth for two edible kelps, Saccharina japonica and Undaria pinnatifida, to ocean acidification and warming.
    Gao X; Kim JH; Park SK; Yu OH; Kim YS; Choi HG
    Mar Pollut Bull; 2019 May; 142():315-320. PubMed ID: 31232310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ultraviolet radiation and nutrients on the structure-function of phytoplankton in a high mountain lake.
    Korbee N; Carrillo P; Mata MT; Rosillo S; Medina-Sánchez JM; Figueroa FL
    Photochem Photobiol Sci; 2012 Jun; 11(6):1087-98. PubMed ID: 22544332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature acclimation and heat tolerance of photosynthesis in Norwegian Saccharina latissima (Laminariales, Phaeophyceae).
    Andersen GS; Pedersen MF; Nielsen SL
    J Phycol; 2013 Aug; 49(4):689-700. PubMed ID: 27007201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dinoflagellate Akashiwo sanguinea will benefit from future climate change: The interactive effects of ocean acidification, warming and high irradiance on photophysiology and hemolytic activity.
    Ou G; Wang H; Si R; Guan W
    Harmful Algae; 2017 Sep; 68():118-127. PubMed ID: 28962974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.