These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 25462086)
1. High nitrate supply reduces growth in maize, from cell to whole plant. Saiz-Fernández I; De Diego N; Sampedro MC; Mena-Petite A; Ortiz-Barredo A; Lacuesta M J Plant Physiol; 2015 Jan; 173():120-9. PubMed ID: 25462086 [TBL] [Abstract][Full Text] [Related]
2. Interplay between 1-aminocyclopropane-1-carboxylic acid, γ-aminobutyrate and D-glucose in the regulation of high nitrate-induced root growth inhibition in maize. Saiz-Fernández I; Lacuesta M; Pérez-López U; Sampedro MC; Barrio RJ; De Diego N Plant Sci; 2020 Apr; 293():110418. PubMed ID: 32081267 [TBL] [Abstract][Full Text] [Related]
3. [Effect of NO3- supply on lateral root growth in maize plants]. Guo YF; Mi GH; Chen FJ; Zhang FS Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):90-6. PubMed ID: 15692184 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. Tian Q; Chen F; Liu J; Zhang F; Mi G J Plant Physiol; 2008 Jun; 165(9):942-51. PubMed ID: 17928098 [TBL] [Abstract][Full Text] [Related]
5. The imbalance between C and N metabolism during high nitrate supply inhibits photosynthesis and overall growth in maize (Zea mays L.). Saiz-Fernández I; De Diego N; Brzobohatý B; Muñoz-Rueda A; Lacuesta M Plant Physiol Biochem; 2017 Nov; 120():213-222. PubMed ID: 29059604 [TBL] [Abstract][Full Text] [Related]
6. Exogenous 2-(3,4-Dichlorophenoxy) triethylamine ameliorates the soil drought effect on nitrogen metabolism in maize during the pre-female inflorescence emergence stage. Xie T; Gu W; Wang M; Zhang L; Li C; Li C; Li W; Li L; Wei S BMC Plant Biol; 2019 Mar; 19(1):107. PubMed ID: 30890144 [TBL] [Abstract][Full Text] [Related]
7. Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate. Granato TC; Raper CD J Exp Bot; 1989 Feb; 40(211):263-75. PubMed ID: 11542157 [TBL] [Abstract][Full Text] [Related]
8. The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. Garnett T; Conn V; Plett D; Conn S; Zanghellini J; Mackenzie N; Enju A; Francis K; Holtham L; Roessner U; Boughton B; Bacic A; Shirley N; Rafalski A; Dhugga K; Tester M; Kaiser BN New Phytol; 2013 Apr; 198(1):82-94. PubMed ID: 23398565 [TBL] [Abstract][Full Text] [Related]
9. Proteomic Profiling for Metabolic Pathways Involved in Interactive Effects of Elevated Carbon Dioxide and Nitrogen on Leaf Growth in a Perennial Grass Species. Yu J; Fan N; Li R; Zhuang L; Xu Q; Huang B J Proteome Res; 2019 Jun; 18(6):2446-2457. PubMed ID: 31081640 [TBL] [Abstract][Full Text] [Related]
10. The signal effect of nitrate supply enhances active forms of cytokinins and indole acetic content and reduces abscisic acid in wheat plants grown with ammonium. Garnica M; Houdusse F; Zamarreño AM; Garcia-Mina JM J Plant Physiol; 2010 Oct; 167(15):1264-72. PubMed ID: 20598773 [TBL] [Abstract][Full Text] [Related]
11. Correlation of continuous ryegrass regrowth with cytokinin induced by root nitrate absorption. Wang XL; Wang J; Li ZQ J Plant Res; 2013 Sep; 126(5):685-97. PubMed ID: 23828031 [TBL] [Abstract][Full Text] [Related]
12. Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. Takei K; Takahashi T; Sugiyama T; Yamaya T; Sakakibara H J Exp Bot; 2002 Apr; 53(370):971-7. PubMed ID: 11912239 [TBL] [Abstract][Full Text] [Related]
13. The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species. Scheurwater I; Koren M; Lambers H; Atkin OK J Exp Bot; 2002 Jul; 53(374):1635-42. PubMed ID: 12096102 [TBL] [Abstract][Full Text] [Related]
14. Cell Type-Specific Gene Expression Analyses by RNA Sequencing Reveal Local High Nitrate-Triggered Lateral Root Initiation in Shoot-Borne Roots of Maize by Modulating Auxin-Related Cell Cycle Regulation. Yu P; Eggert K; von Wirén N; Li C; Hochholdinger F Plant Physiol; 2015 Sep; 169(1):690-704. PubMed ID: 26198256 [TBL] [Abstract][Full Text] [Related]
15. Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays. Zhao DY; Tian QY; Li LH; Zhang WH Ann Bot; 2007 Sep; 100(3):497-503. PubMed ID: 17709366 [TBL] [Abstract][Full Text] [Related]
16. Nitrogen-source preference in blueberry (Vaccinium sp.): Enhanced shoot nitrogen assimilation in response to direct supply of nitrate. Alt DS; Doyle JW; Malladi A J Plant Physiol; 2017 Sep; 216():79-87. PubMed ID: 28578080 [TBL] [Abstract][Full Text] [Related]
17. A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment. Yu P; Li X; Yuan L; Li C Physiol Plant; 2014 Jan; 150(1):133-44. PubMed ID: 23724916 [TBL] [Abstract][Full Text] [Related]
18. Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and nonquality protein maize) under projected levels of ozone. Singh AA; Agrawal SB; Shahi JP; Agrawal M Environ Sci Pollut Res Int; 2014 Feb; 21(4):2628-41. PubMed ID: 24114383 [TBL] [Abstract][Full Text] [Related]
19. Dissecting the effects of nitrate, sucrose and osmotic potential on Arabidopsis root and shoot system growth in laboratory assays. Roycewicz P; Malamy JE Philos Trans R Soc Lond B Biol Sci; 2012 Jun; 367(1595):1489-500. PubMed ID: 22527391 [TBL] [Abstract][Full Text] [Related]
20. Nitrogen and dry-matter partitioning in soybean plants during onset of and recovery from nitrogen stress. Tolley-Henry L; Raper CD Bot Gaz; 1986 Dec; 147(4):392-9. PubMed ID: 11539711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]