These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 25462293)

  • 1. Recent insights into the mode of action of memantine and ketamine.
    Johnson JW; Glasgow NG; Povysheva NV
    Curr Opin Pharmacol; 2015 Feb; 20():54-63. PubMed ID: 25462293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Memantine and Ketamine Differentially Alter NMDA Receptor Desensitization.
    Glasgow NG; Povysheva NV; Azofeifa AM; Johnson JW
    J Neurosci; 2017 Oct; 37(40):9686-9704. PubMed ID: 28877967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of action of memantine.
    Johnson JW; Kotermanski SE
    Curr Opin Pharmacol; 2006 Feb; 6(1):61-7. PubMed ID: 16368266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of behavioral effects of the NMDA receptor channel blockers memantine and ketamine in rats.
    Kotermanski SE; Johnson JW; Thiels E
    Pharmacol Biochem Behav; 2013 Aug; 109():67-76. PubMed ID: 23665480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer's drug memantine.
    Kotermanski SE; Johnson JW
    J Neurosci; 2009 Mar; 29(9):2774-9. PubMed ID: 19261873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Mg
    Glasgow NG; Wilcox MR; Johnson JW
    Neuropharmacology; 2018 Jul; 137():344-358. PubMed ID: 29793153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses.
    Gideons ES; Kavalali ET; Monteggia LM
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8649-54. PubMed ID: 24912158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indistinguishable synaptic pharmacodynamics of the N-methyl-D-aspartate receptor channel blockers memantine and ketamine.
    Emnett CM; Eisenman LN; Taylor AM; Izumi Y; Zorumski CF; Mennerick S
    Mol Pharmacol; 2013 Dec; 84(6):935-47. PubMed ID: 24101301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mTOR activation is required for the anti-alcohol effect of ketamine, but not memantine, in alcohol-preferring rats.
    Sabino V; Narayan AR; Zeric T; Steardo L; Cottone P
    Behav Brain Res; 2013 Jun; 247():9-16. PubMed ID: 23466691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Memantine binding to a superficial site on NMDA receptors contributes to partial trapping.
    Kotermanski SE; Wood JT; Johnson JW
    J Physiol; 2009 Oct; 587(Pt 19):4589-604. PubMed ID: 19687120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potent and reversible open-channel blocker of NMDA receptor derived from dizocilpine with enhanced membrane-to-channel inhibition.
    Misiachna A; Konecny J; Kolcheva M; Ladislav M; Prchal L; Netolicky J; Kortus S; Zahumenska P; Langore E; Novak M; Hemelikova K; Hermanova Z; Hrochova M; Pelikanova A; Odvarkova J; Pejchal J; Kassa J; Zdarova Karasova J; Korabecny J; Soukup O; Horak M
    Biomed Pharmacother; 2024 Sep; 178():117201. PubMed ID: 39053419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of memantine and ketamine in morphine- and pentazocine-induced antinociception in mice.
    Malec D; Mandryk M; Fidecka S
    Pharmacol Rep; 2008; 60(2):149-55. PubMed ID: 18443375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chemical biology of clinically tolerated NMDA receptor antagonists.
    Chen HS; Lipton SA
    J Neurochem; 2006 Jun; 97(6):1611-26. PubMed ID: 16805772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ketamine, an N-methyl-D-aspartate receptor antagonist, inhibits the reflex responses to distension of the rat urinary bladder.
    Castroman PJ; Ness TJ
    Anesthesiology; 2002 Jun; 96(6):1401-9. PubMed ID: 12170053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of glutamate and antagonists of N-methyl-D-aspartate receptors on experimental parkinsonian syndrome in rats.
    Kucheryanu VG; Kryzhanovskii GN
    Bull Exp Biol Med; 2000 Jul; 130(7):629-32. PubMed ID: 11140570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical benefits and risks of N-methyl-d-aspartate receptor antagonists to treat severe opioid use disorder: A systematic review.
    Fluyau D; Revadigar N; Pierre CG
    Drug Alcohol Depend; 2020 Mar; 208():107845. PubMed ID: 31978670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potency, voltage-dependency, agonist concentration-dependency, blocking kinetics and partial untrapping of the uncompetitive N-methyl-D-aspartate (NMDA) channel blocker memantine at human NMDA (GluN1/GluN2A) receptors.
    Gilling KE; Jatzke C; Hechenberger M; Parsons CG
    Neuropharmacology; 2009 Apr; 56(5):866-75. PubMed ID: 19371579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond.
    Lipton SA
    Nat Rev Drug Discov; 2006 Feb; 5(2):160-70. PubMed ID: 16424917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggression and increased glutamate in the mPFC during withdrawal from intermittent alcohol in outbred mice.
    Hwa LS; Nathanson AJ; Shimamoto A; Tayeh JK; Wilens AR; Holly EN; Newman EL; DeBold JF; Miczek KA
    Psychopharmacology (Berl); 2015 Aug; 232(16):2889-902. PubMed ID: 25899790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ketamine, an N-methyl-D-aspartate receptor antagonist, inhibits the spinal neuronal responses to distension of the rat urinary bladder.
    Castroman PJ; Ness TJ
    Anesthesiology; 2002 Jun; 96(6):1410-9. PubMed ID: 12170054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.