BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25462527)

  • 1. To what extent can cortical bone millimeter-scale elasticity be predicted by a two-phase composite model with variable porosity?
    Granke M; Grimal Q; Parnell WJ; Raum K; Gerisch A; Peyrin F; Saïed A; Laugier P
    Acta Biomater; 2015 Jan; 12():207-215. PubMed ID: 25462527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women.
    Granke M; Grimal Q; Saïed A; Nauleau P; Peyrin F; Laugier P
    Bone; 2011 Nov; 49(5):1020-6. PubMed ID: 21855669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-parameter model of the effective elastic tensor for cortical bone.
    Grimal Q; Rus G; Parnell WJ; Laugier P
    J Biomech; 2011 May; 44(8):1621-5. PubMed ID: 21453920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogenization of cortical bone reveals that the organization and shape of pores marginally affect elasticity.
    Cai X; Brenner R; Peralta L; Olivier C; Gouttenoire PJ; Chappard C; Peyrin F; Cassereau D; Laugier P; Grimal Q
    J R Soc Interface; 2019 Feb; 16(151):20180911. PubMed ID: 30958180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic elastic properties of human femoral cortical bone and relationships with composition and microstructure in elderly.
    Cai X; Follet H; Peralta L; Gardegaront M; Farlay D; Gauthier R; Yu B; Gineyts E; Olivier C; Langer M; Gourrier A; Mitton D; Peyrin F; Grimal Q; Laugier P
    Acta Biomater; 2019 May; 90():254-266. PubMed ID: 30922952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relative influence of apatite crystal orientations and intracortical porosity on the elastic anisotropy of human cortical bone.
    Baumann AP; Deuerling JM; Rudy DJ; Niebur GL; Roeder RK
    J Biomech; 2012 Nov; 45(16):2743-9. PubMed ID: 23058867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method.
    Dong XN; Guo XE
    J Biomech Eng; 2006 Jun; 128(3):309-16. PubMed ID: 16706580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximum effect of the heterogeneity of tissue mineralization on the effective cortical bone elastic properties.
    Brémaud L; Cai X; Brenner R; Grimal Q
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1509-1518. PubMed ID: 33884512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the heterogeneous anisotropic elastic properties of human femoral bone: from nanoscopic to organ scale.
    Sansalone V; Naili S; Bousson V; Bergot C; Peyrin F; Zarka J; Laredo JD; Haïat G
    J Biomech; 2010 Jul; 43(10):1857-63. PubMed ID: 20392446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity.
    Dong XN; Guo XE
    J Biomech; 2004 Aug; 37(8):1281-7. PubMed ID: 15212934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties.
    Grimal Q; Raum K; Gerisch A; Laugier P
    Biomech Model Mechanobiol; 2011 Dec; 10(6):925-37. PubMed ID: 21267625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone.
    Parnell WJ; Vu MB; Grimal Q; Naili S
    Biomech Model Mechanobiol; 2012 Jul; 11(6):883-901. PubMed ID: 22109098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach.
    Martínez-Reina J; Domínguez J; García-Aznar JM
    Biomech Model Mechanobiol; 2011 Jun; 10(3):309-22. PubMed ID: 20596743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur.
    Malo MK; Rohrbach D; Isaksson H; Töyräs J; Jurvelin JS; Tamminen IS; Kröger H; Raum K
    Bone; 2013 Apr; 53(2):451-8. PubMed ID: 23334084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of porosity on effective diagonal stiffness coefficients (cii) and elastic anisotropy of cortical bone at 1 MHz: a finite-difference time domain study.
    Baron C; Talmant M; Laugier P
    J Acoust Soc Am; 2007 Sep; 122(3):1810. PubMed ID: 17927440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.
    Hage IS; Hamade RF
    J Mater Sci Mater Med; 2017 Sep; 28(9):135. PubMed ID: 28762142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore network microarchitecture influences human cortical bone elasticity during growth and aging.
    Bala Y; Lefèvre E; Roux JP; Baron C; Lasaygues P; Pithioux M; Kaftandjian V; Follet H
    J Mech Behav Biomed Mater; 2016 Oct; 63():164-173. PubMed ID: 27389322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone.
    Sevostianov I; Kachanov M
    J Biomech; 2000 Jul; 33(7):881-8. PubMed ID: 10831763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization.
    Parnell WJ; Grimal Q
    J R Soc Interface; 2009 Jan; 6(30):97-109. PubMed ID: 18628200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromechanical modeling of elastic properties of cortical bone accounting for anisotropy of dense tissue.
    Salguero L; Saadat F; Sevostianov I
    J Biomech; 2014 Oct; 47(13):3279-87. PubMed ID: 25234350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.