These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 25462527)
1. To what extent can cortical bone millimeter-scale elasticity be predicted by a two-phase composite model with variable porosity? Granke M; Grimal Q; Parnell WJ; Raum K; Gerisch A; Peyrin F; Saïed A; Laugier P Acta Biomater; 2015 Jan; 12():207-215. PubMed ID: 25462527 [TBL] [Abstract][Full Text] [Related]
2. Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Granke M; Grimal Q; Saïed A; Nauleau P; Peyrin F; Laugier P Bone; 2011 Nov; 49(5):1020-6. PubMed ID: 21855669 [TBL] [Abstract][Full Text] [Related]
3. A two-parameter model of the effective elastic tensor for cortical bone. Grimal Q; Rus G; Parnell WJ; Laugier P J Biomech; 2011 May; 44(8):1621-5. PubMed ID: 21453920 [TBL] [Abstract][Full Text] [Related]
4. Anisotropic elastic properties of human femoral cortical bone and relationships with composition and microstructure in elderly. Cai X; Follet H; Peralta L; Gardegaront M; Farlay D; Gauthier R; Yu B; Gineyts E; Olivier C; Langer M; Gourrier A; Mitton D; Peyrin F; Grimal Q; Laugier P Acta Biomater; 2019 May; 90():254-266. PubMed ID: 30922952 [TBL] [Abstract][Full Text] [Related]
5. Homogenization of cortical bone reveals that the organization and shape of pores marginally affect elasticity. Cai X; Brenner R; Peralta L; Olivier C; Gouttenoire PJ; Chappard C; Peyrin F; Cassereau D; Laugier P; Grimal Q J R Soc Interface; 2019 Feb; 16(151):20180911. PubMed ID: 30958180 [TBL] [Abstract][Full Text] [Related]
6. The relative influence of apatite crystal orientations and intracortical porosity on the elastic anisotropy of human cortical bone. Baumann AP; Deuerling JM; Rudy DJ; Niebur GL; Roeder RK J Biomech; 2012 Nov; 45(16):2743-9. PubMed ID: 23058867 [TBL] [Abstract][Full Text] [Related]
7. Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method. Dong XN; Guo XE J Biomech Eng; 2006 Jun; 128(3):309-16. PubMed ID: 16706580 [TBL] [Abstract][Full Text] [Related]
8. Maximum effect of the heterogeneity of tissue mineralization on the effective cortical bone elastic properties. Brémaud L; Cai X; Brenner R; Grimal Q Biomech Model Mechanobiol; 2021 Aug; 20(4):1509-1518. PubMed ID: 33884512 [TBL] [Abstract][Full Text] [Related]
9. Determination of the heterogeneous anisotropic elastic properties of human femoral bone: from nanoscopic to organ scale. Sansalone V; Naili S; Bousson V; Bergot C; Peyrin F; Zarka J; Laredo JD; Haïat G J Biomech; 2010 Jul; 43(10):1857-63. PubMed ID: 20392446 [TBL] [Abstract][Full Text] [Related]
10. The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. Dong XN; Guo XE J Biomech; 2004 Aug; 37(8):1281-7. PubMed ID: 15212934 [TBL] [Abstract][Full Text] [Related]
11. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Grimal Q; Raum K; Gerisch A; Laugier P Biomech Model Mechanobiol; 2011 Dec; 10(6):925-37. PubMed ID: 21267625 [TBL] [Abstract][Full Text] [Related]
12. Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone. Parnell WJ; Vu MB; Grimal Q; Naili S Biomech Model Mechanobiol; 2012 Jul; 11(6):883-901. PubMed ID: 22109098 [TBL] [Abstract][Full Text] [Related]
13. Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach. Martínez-Reina J; Domínguez J; García-Aznar JM Biomech Model Mechanobiol; 2011 Jun; 10(3):309-22. PubMed ID: 20596743 [TBL] [Abstract][Full Text] [Related]
14. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Malo MK; Rohrbach D; Isaksson H; Töyräs J; Jurvelin JS; Tamminen IS; Kröger H; Raum K Bone; 2013 Apr; 53(2):451-8. PubMed ID: 23334084 [TBL] [Abstract][Full Text] [Related]
15. Effect of porosity on effective diagonal stiffness coefficients (cii) and elastic anisotropy of cortical bone at 1 MHz: a finite-difference time domain study. Baron C; Talmant M; Laugier P J Acoust Soc Am; 2007 Sep; 122(3):1810. PubMed ID: 17927440 [TBL] [Abstract][Full Text] [Related]
16. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements. Hage IS; Hamade RF J Mater Sci Mater Med; 2017 Sep; 28(9):135. PubMed ID: 28762142 [TBL] [Abstract][Full Text] [Related]
17. Pore network microarchitecture influences human cortical bone elasticity during growth and aging. Bala Y; Lefèvre E; Roux JP; Baron C; Lasaygues P; Pithioux M; Kaftandjian V; Follet H J Mech Behav Biomed Mater; 2016 Oct; 63():164-173. PubMed ID: 27389322 [TBL] [Abstract][Full Text] [Related]
18. Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone. Sevostianov I; Kachanov M J Biomech; 2000 Jul; 33(7):881-8. PubMed ID: 10831763 [TBL] [Abstract][Full Text] [Related]
19. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization. Parnell WJ; Grimal Q J R Soc Interface; 2009 Jan; 6(30):97-109. PubMed ID: 18628200 [TBL] [Abstract][Full Text] [Related]
20. Micromechanical modeling of elastic properties of cortical bone accounting for anisotropy of dense tissue. Salguero L; Saadat F; Sevostianov I J Biomech; 2014 Oct; 47(13):3279-87. PubMed ID: 25234350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]