BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25462687)

  • 1. The effect of isocapnic hyperoxia on neurophysiology as measured with MRI and MEG.
    Croal PL; Hall EL; Driver ID; Brookes MJ; Gowland PA; Francis ST
    Neuroimage; 2015 Jan; 105():323-31. PubMed ID: 25462687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat.
    Lu J; Dai G; Egi Y; Huang S; Kwon SJ; Lo EH; Kim YR
    Neuroimage; 2009 May; 45(4):1126-34. PubMed ID: 19118633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Test-retest reliability of cerebral blood flow and blood oxygenation level-dependent responses to hypercapnia and hyperoxia using dual-echo pseudo-continuous arterial spin labeling and step changes in the fractional composition of inspired gases.
    Tancredi FB; Lajoie I; Hoge RD
    J Magn Reson Imaging; 2015 Oct; 42(4):1144-57. PubMed ID: 25752936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of hypercapnia on resting and stimulus induced MEG signals.
    Hall EL; Driver ID; Croal PL; Francis ST; Gowland PA; Morris PG; Brookes MJ
    Neuroimage; 2011 Oct; 58(4):1034-43. PubMed ID: 21762783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral blood volume changes during the BOLD post-stimulus undershoot measured with a combined normoxia/hyperoxia method.
    Liu EY; Haist F; Dubowitz DJ; Buxton RB
    Neuroimage; 2019 Jan; 185():154-163. PubMed ID: 30315908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemodynamic and metabolic changes during hypercapnia with normoxia and hyperoxia using pCASL and TRUST MRI in healthy adults.
    Deckers PT; Bhogal AA; Dijsselhof MB; Faraco CC; Liu P; Lu H; Donahue MJ; Siero JC
    J Cereb Blood Flow Metab; 2022 May; 42(5):861-875. PubMed ID: 34851757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential for gas-free measurements of absolute oxygen metabolism during both baseline and activation states in the human brain.
    Liu EY; Guo J; Simon AB; Haist F; Dubowitz DJ; Buxton RB
    Neuroimage; 2020 Feb; 207():116342. PubMed ID: 31722231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular component analysis of hyperoxic and hypercapnic BOLD contrast.
    Schwarzbauer C; Deichmann R
    Neuroimage; 2012 Feb; 59(3):2401-12. PubMed ID: 21945792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of inspired oxygen levels on calibrated fMRI measurements of M, OEF and resting CMRO2 using combined hypercapnia and hyperoxia.
    Lajoie I; Tancredi FB; Hoge RD
    PLoS One; 2017; 12(3):e0174932. PubMed ID: 28362834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of OEF and absolute CMRO2: MRI-based methods using interleaved and combined hypercapnia and hyperoxia.
    Wise RG; Harris AD; Stone AJ; Murphy K
    Neuroimage; 2013 Dec; 83():135-47. PubMed ID: 23769703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional Cerebrovascular Responses to Hypercapnia and Hypoxia.
    Corfield DR; McKay LC
    Adv Exp Med Biol; 2016; 903():157-67. PubMed ID: 27343095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibrated fMRI for dynamic mapping of CMRO
    Englund EK; Fernández-Seara MA; Rodríguez-Soto AE; Lee H; Rodgers ZB; Vidorreta M; Detre JA; Wehrli FW
    J Cereb Blood Flow Metab; 2020 Jul; 40(7):1501-1516. PubMed ID: 31394960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A generalized procedure for calibrated MRI incorporating hyperoxia and hypercapnia.
    Gauthier CJ; Hoge RD
    Hum Brain Mapp; 2013 May; 34(5):1053-69. PubMed ID: 23015481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved fMRI calibration: precisely controlled hyperoxic versus hypercapnic stimuli.
    Mark CI; Fisher JA; Pike GB
    Neuroimage; 2011 Jan; 54(2):1102-11. PubMed ID: 20828623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arterial CO2 Fluctuations Modulate Neuronal Rhythmicity: Implications for MEG and fMRI Studies of Resting-State Networks.
    Driver ID; Whittaker JR; Bright MG; Muthukumaraswamy SD; Murphy K
    J Neurosci; 2016 Aug; 36(33):8541-50. PubMed ID: 27535903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel perspective to calibrate temporal delays in cerebrovascular reactivity using hypercapnic and hyperoxic respiratory challenges.
    Champagne AA; Bhogal AA; Coverdale NS; Mark CI; Cook DJ
    Neuroimage; 2019 Feb; 187():154-165. PubMed ID: 29217405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bolus arrival time and cerebral blood flow responses to hypercarbia.
    Donahue MJ; Faraco CC; Strother MK; Chappell MA; Rane S; Dethrage LM; Hendrikse J; Siero JC
    J Cereb Blood Flow Metab; 2014 Jul; 34(7):1243-52. PubMed ID: 24780904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes in brain hemodynamics; A calibrated MRI study.
    De Vis JB; Hendrikse J; Bhogal A; Adams A; Kappelle LJ; Petersen ET
    Hum Brain Mapp; 2015 Oct; 36(10):3973-87. PubMed ID: 26177724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect sizes of BOLD CVR, resting-state signal fluctuations and time delay measures for the assessment of hemodynamic impairment in carotid occlusion patients.
    De Vis JB; Bhogal AA; Hendrikse J; Petersen ET; Siero JCW
    Neuroimage; 2018 Oct; 179():530-539. PubMed ID: 29913284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cumulative influence of hyperoxia and hypercapnia on blood oxygenation and R*₂.
    Faraco CC; Strother MK; Siero JC; Arteaga DF; Scott AO; Jordan LC; Donahue MJ
    J Cereb Blood Flow Metab; 2015 Dec; 35(12):2032-42. PubMed ID: 26174329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.