These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 25462708)
1. Reservoir and reservoir-less pressure effects on arterial waves in the canine aorta. Borlotti A; Park C; Parker KH; Khir AW J Hypertens; 2015 Mar; 33(3):564-74; discussion 574. PubMed ID: 25462708 [TBL] [Abstract][Full Text] [Related]
2. The reservoir-wave paradigm introduces error into arterial wave analysis: a computer modelling and in-vivo study. Mynard JP; Penny DJ; Davidson MR; Smolich JJ J Hypertens; 2012 Apr; 30(4):734-43. PubMed ID: 22278142 [TBL] [Abstract][Full Text] [Related]
3. Wave speed and intensity in the canine aorta: analysis with and without the Windkessel-wave system. Borlotti A; Khir A Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():219-22. PubMed ID: 22254289 [TBL] [Abstract][Full Text] [Related]
4. The case for the reservoir-wave approach. Tyberg JV; Bouwmeester JC; Parker KH; Shrive NG; Wang JJ Int J Cardiol; 2014 Mar; 172(2):299-306. PubMed ID: 24485224 [TBL] [Abstract][Full Text] [Related]
5. Wave intensity in the ascending aorta: effects of arterial occlusion. Khir AW; Parker KH J Biomech; 2005 Apr; 38(4):647-55. PubMed ID: 15713284 [TBL] [Abstract][Full Text] [Related]
6. Wave propagation and reflection in the canine aorta: analysis using a reservoir-wave approach. Wang JJ; Shrive NG; Parker KH; Hughes AD; Tyberg JV Can J Cardiol; 2011; 27(3):389.e1-10. PubMed ID: 21601775 [TBL] [Abstract][Full Text] [Related]
7. Wave intensity analysis and the development of the reservoir-wave approach. Tyberg JV; Davies JE; Wang Z; Whitelaw WA; Flewitt JA; Shrive NG; Francis DP; Hughes AD; Parker KH; Wang JJ Med Biol Eng Comput; 2009 Feb; 47(2):221-32. PubMed ID: 19189147 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous determination of wave speed and arrival time of reflected waves using the pressure-velocity loop. Khir AW; Swalen MJ; Feng J; Parker KH Med Biol Eng Comput; 2007 Dec; 45(12):1201-10. PubMed ID: 17710460 [TBL] [Abstract][Full Text] [Related]
9. Wave Separation, Wave Intensity, the Reservoir-Wave Concept, and the Instantaneous Wave-Free Ratio: Presumptions and Principles. Westerhof N; Segers P; Westerhof BE Hypertension; 2015 Jul; 66(1):93-8. PubMed ID: 26015448 [TBL] [Abstract][Full Text] [Related]
10. The compression and expansion waves of the forward and backward flows: an in-vitro arterial model. Feng J; Khir AW Proc Inst Mech Eng H; 2008 May; 222(4):531-42. PubMed ID: 18595362 [TBL] [Abstract][Full Text] [Related]
11. Separation of the reservoir and wave pressure and velocity from measurements at an arbitrary location in arteries. Aguado-Sierra J; Alastruey J; Wang JJ; Hadjiloizou N; Davies J; Parker KH Proc Inst Mech Eng H; 2008 May; 222(4):403-16. PubMed ID: 18595353 [TBL] [Abstract][Full Text] [Related]
12. Local and regional wave speed in the aorta: effects of arterial occlusion. Khir AW; Zambanini A; Parker KH Med Eng Phys; 2004 Jan; 26(1):23-9. PubMed ID: 14644595 [TBL] [Abstract][Full Text] [Related]
13. Attenuation of reflected waves in man during retrograde propagation from femoral artery to proximal aorta. Baksi AJ; Davies JE; Hadjiloizou N; Baruah R; Unsworth B; Foale RA; Korolkova O; Siggers JH; Francis DP; Mayet J; Parker KH; Hughes AD Int J Cardiol; 2016 Jan; 202():441-5. PubMed ID: 26436672 [TBL] [Abstract][Full Text] [Related]
14. The arterial reservoir pressure increases with aging and is the major determinant of the aortic augmentation index. Davies JE; Baksi J; Francis DP; Hadjiloizou N; Whinnett ZI; Manisty CH; Aguado-Sierra J; Foale RA; Malik IS; Tyberg JV; Parker KH; Mayet J; Hughes AD Am J Physiol Heart Circ Physiol; 2010 Feb; 298(2):H580-6. PubMed ID: 20008272 [TBL] [Abstract][Full Text] [Related]
15. Impact of varying diastolic pressure fitting technique for the reservoir-wave model on wave intensity analysis. Pomella N; Rietzschel ER; Segers P; Khir AW Proc Inst Mech Eng H; 2020 Nov; 234(11):1300-1311. PubMed ID: 32996433 [TBL] [Abstract][Full Text] [Related]
16. An introduction to wave intensity analysis. Parker KH Med Biol Eng Comput; 2009 Feb; 47(2):175-88. PubMed ID: 19205773 [TBL] [Abstract][Full Text] [Related]
17. Determination of wave speed and wave separation in the arteries using diameter and velocity. Feng J; Khir AW J Biomech; 2010 Feb; 43(3):455-62. PubMed ID: 19892359 [TBL] [Abstract][Full Text] [Related]
18. The aortic reservoir-wave as a paradigm for arterial haemodynamics: insights from three-dimensional fluid-structure interaction simulations in a model of aortic coarctation. Segers P; Taelman L; Degroote J; Bols J; Vierendeels J J Hypertens; 2015 Mar; 33(3):554-63; discussion 563. PubMed ID: 25479031 [TBL] [Abstract][Full Text] [Related]
19. Classical electrical and hydraulic Windkessel models validate physiological calculations of Windkessel (reservoir) pressure. Sridharan SS; Burrowes LM; Bouwmeester JC; Wang JJ; Shrive NG; Tyberg JV Can J Physiol Pharmacol; 2012 May; 90(5):579-85. PubMed ID: 22471992 [TBL] [Abstract][Full Text] [Related]
20. Exercise central (aortic) blood pressure is predominantly driven by forward traveling waves, not wave reflection. Schultz MG; Davies JE; Roberts-Thomson P; Black JA; Hughes AD; Sharman JE Hypertension; 2013 Jul; 62(1):175-82. PubMed ID: 23716581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]