These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 25462730)
1. Remote estimation of cyanobacteria-dominance in inland waters. Shi K; Zhang Y; Li Y; Li L; Lv H; Liu X Water Res; 2015 Jan; 68():217-26. PubMed ID: 25462730 [TBL] [Abstract][Full Text] [Related]
2. Remote chlorophyll-a estimates for inland waters based on a cluster-based classification. Shi K; Li Y; Li L; Lu H; Song K; Liu Z; Xu Y; Li Z Sci Total Environ; 2013 Feb; 444():1-15. PubMed ID: 23262320 [TBL] [Abstract][Full Text] [Related]
3. Estimation of cyanobacteria biovolume in water reservoirs by MERIS sensor. Medina-Cobo M; Domínguez JA; Quesada A; de Hoyos C Water Res; 2014 Oct; 63():10-20. PubMed ID: 24971813 [TBL] [Abstract][Full Text] [Related]
4. Cyanobacterial pigment concentrations in inland waters: Novel semi-analytical algorithms for multi- and hyperspectral remote sensing data. Dev PJ; Sukenik A; Mishra DR; Ostrovsky I Sci Total Environ; 2022 Jan; 805():150423. PubMed ID: 34818810 [TBL] [Abstract][Full Text] [Related]
5. Estimation of underwater visibility in coastal and inland waters using remote sensing data. Kulshreshtha A; Shanmugam P Environ Monit Assess; 2017 Apr; 189(4):199. PubMed ID: 28361489 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes. Lyu H; Li X; Wang Y; Jin Q; Cao K; Wang Q; Li Y Sci Total Environ; 2015 Oct; 530-531():373-382. PubMed ID: 26057542 [TBL] [Abstract][Full Text] [Related]
7. Hyperspectral determination of eutrophication for a water supply source via genetic algorithm-partial least squares (GA-PLS) modeling. Song K; Li L; Tedesco LP; Li S; Clercin NA; Hall BE; Li Z; Shi K Sci Total Environ; 2012 Jun; 426():220-32. PubMed ID: 22521166 [TBL] [Abstract][Full Text] [Related]
8. A semi-analytical algorithm for remote estimation of phycocyanin in inland waters. Li L; Li L; Shi K; Li Z; Song K Sci Total Environ; 2012 Oct; 435-436():141-50. PubMed ID: 22846774 [TBL] [Abstract][Full Text] [Related]
9. Determination of phytoplankton abundances (Chlorophyll-a) in the optically complex inland water - The Baltic Sea. Zhang D; Lavender S; Muller JP; Walton D; Karlson B; Kronsell J Sci Total Environ; 2017 Dec; 601-602():1060-1074. PubMed ID: 28599362 [TBL] [Abstract][Full Text] [Related]
10. Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC fluorescence probe. Song K; Li L; Tedesco L; Clercin N; Hall B; Li S; Shi K; Liu D; Sun Y Environ Sci Pollut Res Int; 2013 Aug; 20(8):5330-40. PubMed ID: 23397212 [TBL] [Abstract][Full Text] [Related]
11. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Stumpf RP; Davis TW; Wynne TT; Graham JL; Loftin KA; Johengen TH; Gossiaux D; Palladino D; Burtner A Harmful Algae; 2016 Apr; 54():160-173. PubMed ID: 28073474 [TBL] [Abstract][Full Text] [Related]
12. [Hyperspectral remote sensing of total suspended matter concentrations in Lake Taihu based on water optical classification]. Zhou XY; Sun DY; Li YM; Li JS; Gong SQ Huan Jing Ke Xue; 2013 Jul; 34(7):2618-27. PubMed ID: 24027991 [TBL] [Abstract][Full Text] [Related]
13. Application of remote sensing for the optimization of in-situ sampling for monitoring of phytoplankton abundance in a large lake. Kiefer I; Odermatt D; Anneville O; Wüest A; Bouffard D Sci Total Environ; 2015 Sep; 527-528():493-506. PubMed ID: 26002424 [TBL] [Abstract][Full Text] [Related]
14. Multispectral remote sensing of harmful algal blooms in Lake Champlain, USA. Isenstein EM; Trescott A; Park MH Water Environ Res; 2014 Dec; 86(12):2271-8. PubMed ID: 25654929 [TBL] [Abstract][Full Text] [Related]
15. Remote estimation of phycocyanin concentration in inland waters based on optical classification. Lyu L; Song K; Wen Z; Liu G; Fang C; Shang Y; Li S; Tao H; Wang X; Li Y; Wang X Sci Total Environ; 2023 Nov; 899():166363. PubMed ID: 37598955 [TBL] [Abstract][Full Text] [Related]
16. Assessing in situ dominance pattern of phytoplankton classes by dominance analysis as a proxy for realized niches. Dunker S; Nadrowski K; Jakob T; Kasprzak P; Becker A; Langner U; Kunath C; Harpole S; Wilhelm C Harmful Algae; 2016 Sep; 58():74-84. PubMed ID: 28073461 [TBL] [Abstract][Full Text] [Related]
17. A new approach to quantify chlorophyll-a over inland water targets based on multi-source remote sensing data. Wang J; Chen X Sci Total Environ; 2024 Jan; 906():167631. PubMed ID: 37806589 [TBL] [Abstract][Full Text] [Related]
18. Estimation of K Wen Z; Song K; Fang C; Yang Q; Liu G; Shang Y; Wang X Environ Sci Pollut Res Int; 2019 Oct; 26(29):30098-30111. PubMed ID: 31418147 [TBL] [Abstract][Full Text] [Related]
19. [Remote Sensing of Chlorophyll-a Concentrations in Lake Hongze Using Long Time Series MERIS Observations]. Liu G; Li YM; Lü H; Mu M; Lei SH; Wen S; Bi S; Ding XL Huan Jing Ke Xue; 2017 Sep; 38(9):3645-3656. PubMed ID: 29965243 [TBL] [Abstract][Full Text] [Related]
20. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Yacobi YZ; Moses WJ; Kaganovsky S; Sulimani B; Leavitt BC; Gitelson AA Water Res; 2011 Mar; 45(7):2428-36. PubMed ID: 21376361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]