These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 25462742)
1. Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand. Basnet M; Di Tommaso C; Ghoshal S; Tufenkji N Water Res; 2015 Jan; 68():354-63. PubMed ID: 25462742 [TBL] [Abstract][Full Text] [Related]
2. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media. Basnet M; Ghoshal S; Tufenkji N Environ Sci Technol; 2013; 47(23):13355-64. PubMed ID: 24237158 [TBL] [Abstract][Full Text] [Related]
3. Deposition of carboxymethylcellulose-coated zero-valent iron nanoparticles onto silica: roles of solution chemistry and organic molecules. Fatisson J; Ghoshal S; Tufenkji N Langmuir; 2010 Aug; 26(15):12832-40. PubMed ID: 20593855 [TBL] [Abstract][Full Text] [Related]
4. Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Raychoudhury T; Tufenkji N; Ghoshal S Water Res; 2014 Mar; 50():80-9. PubMed ID: 24361705 [TBL] [Abstract][Full Text] [Related]
5. Effects of Rhamnolipid and Carboxymethylcellulose Coatings on Reactivity of Palladium-Doped Nanoscale Zerovalent Iron Particles. Bhattacharjee S; Basnet M; Tufenkji N; Ghoshal S Environ Sci Technol; 2016 Feb; 50(4):1812-20. PubMed ID: 26745244 [TBL] [Abstract][Full Text] [Related]
6. Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Laumann S; Micić V; Lowry GV; Hofmann T Environ Pollut; 2013 Aug; 179():53-60. PubMed ID: 23644276 [TBL] [Abstract][Full Text] [Related]
7. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. Busch J; Meißner T; Potthoff A; Bleyl S; Georgi A; Mackenzie K; Trabitzsch R; Werban U; Oswald SE J Contam Hydrol; 2015 Oct; 181():59-68. PubMed ID: 25864966 [TBL] [Abstract][Full Text] [Related]
9. Transport of carboxymethyl cellulose-coated zerovalent iron nanoparticles in a sand tank: Effects of sand grain size, nanoparticle concentration and injection velocity. Li J; Rajajayavel SRC; Ghoshal S Chemosphere; 2016 May; 150():8-16. PubMed ID: 26891351 [TBL] [Abstract][Full Text] [Related]
10. Ligand-mediated contaminant degradation by bare and carboxymethyl cellulose-coated bimetallic palladium-zero valent iron nanoparticles in high salinity environments. Ma X; He D; Jones AM; Waite TD; An T J Environ Sci (China); 2019 Mar; 77():303-311. PubMed ID: 30573094 [TBL] [Abstract][Full Text] [Related]
11. Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Raychoudhury T; Tufenkji N; Ghoshal S Water Res; 2012 Apr; 46(6):1735-44. PubMed ID: 22244967 [TBL] [Abstract][Full Text] [Related]
12. Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media. Dong H; Zeng G; Zhang C; Liang J; Ahmad K; Xu P; He X; Lai M J Environ Sci (China); 2015 Jun; 32():180-8. PubMed ID: 26040744 [TBL] [Abstract][Full Text] [Related]
13. Transport of the arsenic (As)-loaded nano zero-valent iron in groundwater-saturated sand columns: Roles of surface modification and As loading. Yu Z; Hu L; Lo IMC Chemosphere; 2019 Feb; 216():428-436. PubMed ID: 30384313 [TBL] [Abstract][Full Text] [Related]
14. Subsurface transport of carboxymethyl cellulose (CMC)-stabilized nanoscale zero valent iron (nZVI): Numerical and statistical analysis. Asad MA; Khan UT; Krol MM J Contam Hydrol; 2021 Dec; 243():103870. PubMed ID: 34418819 [TBL] [Abstract][Full Text] [Related]
15. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media. Busch J; Meißner T; Potthoff A; Oswald SE J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Lin YH; Tseng HH; Wey MY; Lin MD Sci Total Environ; 2010 Apr; 408(10):2260-7. PubMed ID: 20163828 [TBL] [Abstract][Full Text] [Related]
17. Transport of nanoscale zero-valent iron in saturated porous media: Effects of grain size, surface metal oxides, and sulfidation. Chen B; Lv N; Xu W; Gong L; Sun T; Liang L; Gao B; He F Chemosphere; 2023 Feb; 313():137512. PubMed ID: 36495971 [TBL] [Abstract][Full Text] [Related]
18. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media. Su Y; Zhao YS; Li LL; Qin CY; Wu F; Geng NN; Lei JS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1639-52. PubMed ID: 25320851 [TBL] [Abstract][Full Text] [Related]
19. Transport of polymer stabilized nano-scale zero-valent iron in porous media. Mondal PK; Furbacher PD; Cui Z; Krol MM; Sleep BE J Contam Hydrol; 2018 May; 212():65-77. PubMed ID: 29223368 [TBL] [Abstract][Full Text] [Related]
20. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores. Chekli L; Brunetti G; Marzouk ER; Maoz-Shen A; Smith E; Naidu R; Shon HK; Lombi E; Donner E Environ Pollut; 2016 Sep; 216():636-645. PubMed ID: 27357483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]