These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 25462777)
1. Influences of nanoscale zero valent iron loadings and bicarbonate and calcium concentrations on hydrogen evolution in anaerobic column experiments. Paar H; Ruhl AS; Jekel M Water Res; 2015 Jan; 68():731-9. PubMed ID: 25462777 [TBL] [Abstract][Full Text] [Related]
2. Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Kanel SR; Greneche JM; Choi H Environ Sci Technol; 2006 Mar; 40(6):2045-50. PubMed ID: 16570634 [TBL] [Abstract][Full Text] [Related]
3. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Rajajayavel SR; Ghoshal S Water Res; 2015 Jul; 78():144-53. PubMed ID: 25935369 [TBL] [Abstract][Full Text] [Related]
4. Measuring the reactivity of commercially available zero-valent iron nanoparticles used for environmental remediation with iopromide. Schmid D; Micić V; Laumann S; Hofmann T J Contam Hydrol; 2015 Oct; 181():36-45. PubMed ID: 25708601 [TBL] [Abstract][Full Text] [Related]
5. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid. Kim HS; Ahn JY; Kim C; Lee S; Hwang I Chemosphere; 2014 Oct; 113():93-100. PubMed ID: 25065795 [TBL] [Abstract][Full Text] [Related]
6. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles. Jiamjitrpanich W; Polprasert C; Parkpian P; Delaune RD; Jugsujinda A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):263-74. PubMed ID: 20390867 [TBL] [Abstract][Full Text] [Related]
7. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. Busch J; Meißner T; Potthoff A; Bleyl S; Georgi A; Mackenzie K; Trabitzsch R; Werban U; Oswald SE J Contam Hydrol; 2015 Oct; 181():59-68. PubMed ID: 25864966 [TBL] [Abstract][Full Text] [Related]
8. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media. Busch J; Meißner T; Potthoff A; Oswald SE J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524 [TBL] [Abstract][Full Text] [Related]
9. Groundwater geochemical constituents controlling the reductive dechlorination of TCE by nZVI: Evidence from diverse anaerobic corrosion mechanisms of nZVI. Yang X; Zhang C; Liu F; Tang J Chemosphere; 2021 Jan; 262():127707. PubMed ID: 32755691 [TBL] [Abstract][Full Text] [Related]
10. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Chen J; Xiu Z; Lowry GV; Alvarez PJ Water Res; 2011 Feb; 45(5):1995-2001. PubMed ID: 21232782 [TBL] [Abstract][Full Text] [Related]
11. Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media. HonetschlÄgerová L; Janouškovcová P; Kubal M Environ Technol; 2016; 37(12):1530-8. PubMed ID: 26582314 [TBL] [Abstract][Full Text] [Related]
12. Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems. Xie Y; Cwiertny DM Environ Sci Technol; 2010 Nov; 44(22):8649-8655. PubMed ID: 20968304 [TBL] [Abstract][Full Text] [Related]
13. Calcium hydroxide coating on highly reactive nanoscale zero-valent iron for in situ remediation application. Wei CJ; Xie YF; Wang XM; Li XY Chemosphere; 2018 Sep; 207():715-724. PubMed ID: 29859484 [TBL] [Abstract][Full Text] [Related]
14. Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone. Taghavy A; Costanza J; Pennell KD; Abriola LM J Contam Hydrol; 2010 Nov; 118(3-4):128-42. PubMed ID: 20888664 [TBL] [Abstract][Full Text] [Related]
15. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review. Xie Y; Dong H; Zeng G; Tang L; Jiang Z; Zhang C; Deng J; Zhang L; Zhang Y J Hazard Mater; 2017 Jan; 321():390-407. PubMed ID: 27669380 [TBL] [Abstract][Full Text] [Related]
16. Effect of bicarbonate on aging and reactivity of nanoscale zerovalent iron (nZVI) toward uranium removal. Hua Y; Wang W; Huang X; Gu T; Ding D; Ling L; Zhang WX Chemosphere; 2018 Jun; 201():603-611. PubMed ID: 29544215 [TBL] [Abstract][Full Text] [Related]
17. Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. Chang MC; Kang HY J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):576-82. PubMed ID: 19337920 [TBL] [Abstract][Full Text] [Related]
18. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media. Strutz TJ; Hornbruch G; Dahmke A; Köber R J Contam Hydrol; 2016 Aug; 191():54-65. PubMed ID: 27244572 [TBL] [Abstract][Full Text] [Related]
19. Degradation of simazine from aqueous solutions by diatomite-supported nanosized zero-valent iron composite materials. Sun Z; Zheng S; Ayoko GA; Frost RL; Xi Y J Hazard Mater; 2013 Dec; 263 Pt 2():768-77. PubMed ID: 24231330 [TBL] [Abstract][Full Text] [Related]
20. Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Laumann S; Micić V; Lowry GV; Hofmann T Environ Pollut; 2013 Aug; 179():53-60. PubMed ID: 23644276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]