BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25462786)

  • 1. Identification of environmental chemicals that induce yolk malabsorption in zebrafish using automated image segmentation.
    Kalasekar SM; Zacharia E; Kessler N; Ducharme NA; Gustafsson JÅ; Kakadiaris IA; Bondesson M
    Reprod Toxicol; 2015 Aug; 55():20-9. PubMed ID: 25462786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish as a Model for Toxicological Perturbation of Yolk and Nutrition in the Early Embryo.
    Sant KE; Timme-Laragy AR
    Curr Environ Health Rep; 2018 Mar; 5(1):125-133. PubMed ID: 29417450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo imaging and quantitative analysis of changes in axon length using transgenic zebrafish embryos.
    Kanungo J; Lantz S; Paule MG
    Neurotoxicol Teratol; 2011; 33(6):618-23. PubMed ID: 21903162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental toxicity assay using high content screening of zebrafish embryos.
    Lantz-McPeak S; Guo X; Cuevas E; Dumas M; Newport GD; Ali SF; Paule MG; Kanungo J
    J Appl Toxicol; 2015 Mar; 35(3):261-72. PubMed ID: 24871937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated analysis of zebrafish images for screening toxicants.
    Hans C; McCollum CW; Bondesson MB; Gustafsson JA; Shah SK; Merchant FA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3004-7. PubMed ID: 24110359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of convergent yolk syncytial layer nuclear movement in zebrafish.
    Carvalho L; Stühmer J; Bois JS; Kalaidzidis Y; Lecaudey V; Heisenberg CP
    Development; 2009 Apr; 136(8):1305-15. PubMed ID: 19279138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Ca(2+) signaling in the external yolk syncytial layer during the late blastula and early gastrula periods of zebrafish development.
    Yuen MY; Webb SE; Chan CM; Thisse B; Thisse C; Miller AL
    Biochim Biophys Acta; 2013 Jul; 1833(7):1641-56. PubMed ID: 23142640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated image-based phenotypic analysis in zebrafish embryos.
    Vogt A; Cholewinski A; Shen X; Nelson SG; Lazo JS; Tsang M; Hukriede NA
    Dev Dyn; 2009 Mar; 238(3):656-63. PubMed ID: 19235725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals.
    Yang L; Ho NY; Alshut R; Legradi J; Weiss C; Reischl M; Mikut R; Liebel U; Müller F; Strähle U
    Reprod Toxicol; 2009 Sep; 28(2):245-53. PubMed ID: 19406227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic fish systems and their application in ecotoxicology.
    Lee O; Green JM; Tyler CR
    Crit Rev Toxicol; 2015 Feb; 45(2):124-41. PubMed ID: 25394772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a quantitative morphological assessment of toxicant-treated zebrafish larvae using brightfield imaging and high-content analysis.
    Deal S; Wambaugh J; Judson R; Mosher S; Radio N; Houck K; Padilla S
    J Appl Toxicol; 2016 Sep; 36(9):1214-22. PubMed ID: 26924781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of automated imaging and analysis for zebrafish chemical screens.
    Vogt A; Codore H; Day BW; Hukriede NA; Tsang M
    J Vis Exp; 2010 Jun; (40):. PubMed ID: 20613708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sterol O-Acyltransferase 2 Contributes to the Yolk Cholesterol Trafficking during Zebrafish Embryogenesis.
    Chang NY; Chan YJ; Ding ST; Lee YH; HuangFu WC; Liu IH
    PLoS One; 2016; 11(12):e0167644. PubMed ID: 27936201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae.
    Schlegel A; Stainier DY
    Biochemistry; 2006 Dec; 45(51):15179-87. PubMed ID: 17176039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High transgene activity in the yolk syncytial layer affects quantitative transient expression assays in zebrafish Danio rerio) embryos.
    Williams DW; Müller F; Lavender FL; Orbán L; Maclean N
    Transgenic Res; 1996 Nov; 5(6):433-42. PubMed ID: 8840526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism.
    Miyares RL; de Rezende VB; Farber SA
    Dis Model Mech; 2014 Jul; 7(7):915-27. PubMed ID: 24812437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Morphological Feature Assessment for Zebrafish Embryo Developmental Toxicity Screens.
    Teixidó E; Kießling TR; Krupp E; Quevedo C; Muriana A; Scholz S
    Toxicol Sci; 2019 Feb; 167(2):438-449. PubMed ID: 30295906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prochloraz effects on biomarkers activity in zebrafish early life stages and adults.
    Domingues I; Oliveira R; Musso C; Cardoso M; Soares AM; Loureiro S
    Environ Toxicol; 2013 Mar; 28(3):155-63. PubMed ID: 21656639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of visualized transgenic zebrafish as a high throughput model to assay bradycardia related cardio toxicity risk candidates.
    Wen D; Liu A; Chen F; Yang J; Dai R
    J Appl Toxicol; 2012 Oct; 32(10):834-42. PubMed ID: 22744888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-content screening assay for identification of chemicals impacting spontaneous activity in zebrafish embryos.
    Raftery TD; Isales GM; Yozzo KL; Volz DC
    Environ Sci Technol; 2014; 48(1):804-10. PubMed ID: 24328182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.