BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25462841)

  • 1. Field effect transistors based on semiconductive microbially synthesized chalcogenide nanofibers.
    McFarlane IR; Lazzari-Dean JR; El-Naggar MY
    Acta Biomater; 2015 Feb; 13():364-73. PubMed ID: 25462841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41.
    Lee JH; Kim MG; Yoo B; Myung NV; Maeng J; Lee T; Dohnalkova AC; Fredrickson JK; Sadowsky MJ; Hur HG
    Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20410-5. PubMed ID: 18077394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shewanella sp. O23S as a Driving Agent of a System Utilizing Dissimilatory Arsenate-Reducing Bacteria Responsible for Self-Cleaning of Water Contaminated with Arsenic.
    Drewniak L; Stasiuk R; Uhrynowski W; Sklodowska A
    Int J Mol Sci; 2015 Jun; 16(7):14409-27. PubMed ID: 26121297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiring Shewanella strains with different arsenic-reducing activities.
    Jiang S; Lee JH; Kim D; Kanaly RA; Kim MG; Hur HG
    Environ Sci Technol; 2013 Aug; 47(15):8616-23. PubMed ID: 23802758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering bacteria for biogenic synthesis of chalcogenide nanomaterials.
    Chellamuthu P; Tran F; Silva KPT; Chavez MS; El-Naggar MY; Boedicker JQ
    Microb Biotechnol; 2019 Jan; 12(1):161-172. PubMed ID: 30369058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monodispersed biocompatible silver sulfide nanoparticles: facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis.
    Suresh AK; Doktycz MJ; Wang W; Moon JW; Gu B; Meyer HM; Hensley DK; Allison DP; Phelps TJ; Pelletier DA
    Acta Biomater; 2011 Dec; 7(12):4253-8. PubMed ID: 21798382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofabrication of morphology improved cadmium sulfide nanoparticles using Shewanella oneidensis bacterial cells and ionic liquid: For toxicity against brain cancer cell lines.
    Wang L; Chen S; Ding Y; Zhu Q; Zhang N; Yu S
    J Photochem Photobiol B; 2018 Jan; 178():424-427. PubMed ID: 29207279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive microbially and Mn oxide mediated redox processes controlling arsenic speciation and partitioning.
    Ying SC; Kocar BD; Griffis SD; Fendorf S
    Environ Sci Technol; 2011 Jul; 45(13):5572-9. PubMed ID: 21648436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogenic formation of As-S nanotubes by diverse Shewanella strains.
    Jiang S; Lee JH; Kim MG; Myung NV; Fredrickson JK; Sadowsky MJ; Hur HG
    Appl Environ Microbiol; 2009 Nov; 75(21):6896-9. PubMed ID: 19717628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Draft genome sequence of Shewanella sp. strain HN-41, which produces arsenic-sulfide nanotubes.
    Kim DH; Jiang S; Lee JH; Cho YJ; Chun J; Choi SH; Park HS; Hur HG
    J Bacteriol; 2011 Sep; 193(18):5039-40. PubMed ID: 21868804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction.
    Lee JH; Kennedy DW; Dohnalkova A; Moore DA; Nachimuthu P; Reed SB; Fredrickson JK
    Environ Microbiol; 2011 Dec; 13(12):3275-88. PubMed ID: 21951417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression dynamics of arsenic respiration and detoxification in Shewanella sp. strain ANA-3.
    Saltikov CW; Wildman RA; Newman DK
    J Bacteriol; 2005 Nov; 187(21):7390-6. PubMed ID: 16237022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between arsenic and selenium biomineralization in Shewanella sp. O23S.
    Staicu LC; Wójtowicz PJ; Molnár Z; Ruiz-Agudo E; Gallego JLR; Baragaño D; Pósfai M
    Environ Pollut; 2022 Aug; 306():119451. PubMed ID: 35569621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic biotransformation in industrial wastewater treatment residue: Effect of co-existing Shewanella sp. ANA-3 and MR-1.
    Li H; Zhang L; Ye L; Jing C
    J Environ Sci (China); 2022 Aug; 118():14-20. PubMed ID: 35305762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis.
    Suresh AK; Pelletier DA; Wang W; Broich ML; Moon JW; Gu B; Allison DP; Joy DC; Phelps TJ; Doktycz MJ
    Acta Biomater; 2011 May; 7(5):2148-52. PubMed ID: 21241833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and simple method for the most-probable-number estimation of arsenic-reducing bacteria.
    Kuai L; Nair AA; Polz MF
    Appl Environ Microbiol; 2001 Jul; 67(7):3168-73. PubMed ID: 11425737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotransformation and biomethylation of arsenic by Shewanella oneidensis MR-1.
    Wang J; Wu M; Lu G; Si Y
    Chemosphere; 2016 Feb; 145():329-35. PubMed ID: 26692509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions.
    Zhang S; Yan Z; Li Y; Chen Z; Zeng H
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):3112-5. PubMed ID: 25564773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cymA gene, encoding a tetraheme c-type cytochrome, is required for arsenate respiration in Shewanella species.
    Murphy JN; Saltikov CW
    J Bacteriol; 2007 Mar; 189(6):2283-90. PubMed ID: 17209025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria.
    Liu C; Gorby YA; Zachara JM; Fredrickson JK; Brown CF
    Biotechnol Bioeng; 2002 Dec; 80(6):637-49. PubMed ID: 12378605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.