These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25462942)

  • 1. MR relaxometry of micro-bubbles in the vertical bubbly flow at a low magnetic field (0.2T).
    Arbabi A; Hall J; Richard P; Wilkins S; Mastikhin IV
    J Magn Reson; 2014 Dec; 249():16-23. PubMed ID: 25462942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic susceptibility based magnetic resonance estimation of micro-bubble size for the vertically upward bubbly flow.
    Arbabi A; Mastikhin IV
    J Magn Reson; 2012 Dec; 225():36-45. PubMed ID: 23117260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound Pulse-Echo Coupled with a Tracking Technique for Simultaneous Measurement of Multiple Bubbles.
    Povolny A; Kikura H; Ihara T
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Dimensional Numerical Simulations of Ultrasound in Liquids with Gas Bubble Agglomerates: Examples of Bubbly-Liquid-Type Acoustic Metamaterials (BLAMMs).
    Vanhille C
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Study of the Effect of Homogeneous and Heterogeneous Bubbly Flows on Bulk Gas-Liquid Heat Transfer.
    Panicker NS; Passalacqua A; Fox RO
    J Fluids Eng; 2020 Oct; 142(10):101402. PubMed ID: 32981984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manifestations of slow site exchange processes in solution NMR: a continuous Gaussian exchange model.
    Schurr JM; Fujimoto BS; Diaz R; Robinson BH
    J Magn Reson; 1999 Oct; 140(2):404-31. PubMed ID: 10497047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsatile gas-liquid flow resembling Decompression Sickness: Computational Fluid Dynamics simulation and experimental validation.
    Evgenidis S; Karapantsios T
    Int Marit Health; 2022; 73(4):189-198. PubMed ID: 36583406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cultivation of Anabaena variabilis in a bubble column operating under bubbly and slug flows.
    Yoon JH; Choi SS; Park TH
    Bioresour Technol; 2012 Apr; 110():430-6. PubMed ID: 22326115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The speed of sound in a gas-vapour bubbly liquid.
    Prosperetti A
    Interface Focus; 2015 Oct; 5(5):20150024. PubMed ID: 26442146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CPMG relaxation rate dispersion in dipole fields around capillaries.
    Kurz FT; Kampf T; Buschle LR; Heiland S; Schlemmer HP; Bendszus M; Ziener CH
    Magn Reson Imaging; 2016 Sep; 34(7):875-88. PubMed ID: 27071310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous measurement of bubble size, velocity and void fraction in two-phase bubbly flows with time-resolved X-ray imaging.
    Jung SY; Park HW; Lee SJ
    J Synchrotron Radiat; 2014 Mar; 21(Pt 2):424-9. PubMed ID: 24562565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the prediction of the phase distribution of bubbly flow in a horizontal pipe.
    Yeoh GH; Cheung SC; Tu JY
    Chem Eng Res Des; 2012 Jan; 90(1):40-51. PubMed ID: 24415823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures.
    Zhang Y; Guo Z; Gao Y; Du X
    Ultrason Sonochem; 2018 Jan; 40(Pt B):40-45. PubMed ID: 28389057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation.
    Louisnard O
    Ultrason Sonochem; 2012 Jan; 19(1):56-65. PubMed ID: 21764348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency.
    Wilson PS; Roy RA; Carey WM
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1895-910. PubMed ID: 15898635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic spectrometry of bubbles in an estuarine front: Sound speed dispersion, void fraction, and bubble density.
    Reeder DB; Joseph JE; Rago TA; Bullard JM; Honegger D; Haller MC
    J Acoust Soc Am; 2022 Apr; 151(4):2429. PubMed ID: 35461491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of a method for real time quantification of gas bubbles in pipelines.
    Baik K; Leighton TG; Jiang J
    J Acoust Soc Am; 2014 Aug; 136(2):502-13. PubMed ID: 25096085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation and evolution of bubbly screens in confined oscillating bubbly liquids.
    Shklyaev S; Straube AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016321. PubMed ID: 20365474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: Numerical experiments.
    Vanhille C; Campos-Pozuelo C
    Ultrason Sonochem; 2009 Jun; 16(5):669-85. PubMed ID: 19171496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced agitation in homogeneous bubbly flows at moderate particle Reynolds number.
    Cartellier A; Andreotti M; Sechet P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):065301. PubMed ID: 20365222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.