These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 25462963)
1. Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease. Pinweha N; Asvarak T; Viboonjun U; Narangajavana J J Plant Physiol; 2015 Feb; 174():26-35. PubMed ID: 25462963 [TBL] [Abstract][Full Text] [Related]
2. Cassava (Manihot esculenta) transcriptome analysis in response to infection by the fungus Colletotrichum gloeosporioides using an oligonucleotide-DNA microarray. Utsumi Y; Tanaka M; Kurotani A; Yoshida T; Mochida K; Matsui A; Ishitani M; Sraphet S; Whankaew S; Asvarak T; Narangajavana J; Triwitayakorn K; Sakurai T; Seki M J Plant Res; 2016 Jul; 129(4):711-726. PubMed ID: 27138000 [TBL] [Abstract][Full Text] [Related]
3. Screening of cassava and yam cultivars for resistance to anthracnose using toxic metabolites of colletotrichum species. Amusa NA Mycopathologia; 2001; 150(3):137-42. PubMed ID: 11469761 [TBL] [Abstract][Full Text] [Related]
4. Enhancing of anthracnose disease resistance indicates a potential role of antimicrobial peptide genes in cassava. Hormhuan P; Viboonjun U; Sojikul P; Narangajavana J Genetica; 2020 Aug; 148(3-4):135-148. PubMed ID: 32654093 [TBL] [Abstract][Full Text] [Related]
5. Potential functions of microRNAs in starch metabolism and development revealed by miRNA transcriptome profiling of cassava cultivars and their wild progenitor. Chen X; Xia J; Xia Z; Zhang H; Zeng C; Lu C; Zhang W; Wang W BMC Plant Biol; 2015 Feb; 15():33. PubMed ID: 25648603 [TBL] [Abstract][Full Text] [Related]
6. First Report of Colletotrichum gloeosporioides f. sp. manihotis, Cause of Cassava Anthracnose Disease, Being Seed-borne and Seed-Transmitted in Cassava. Fokunang CN; Ikotun T; Dixon AGO; Akem CN Plant Dis; 1997 Jun; 81(6):695. PubMed ID: 30861870 [TBL] [Abstract][Full Text] [Related]
7. Expression patterns of members of the ethylene signaling-related gene families in response to dehydration stresses in cassava. Ren MY; Feng RJ; Shi HR; Lu LF; Yun TY; Peng M; Guan X; Zhang H; Wang JY; Zhang XY; Li CL; Chen YJ; He P; Zhang YD; Xie JH PLoS One; 2017; 12(5):e0177621. PubMed ID: 28542282 [TBL] [Abstract][Full Text] [Related]
8. In vitro, greenhouse and field assessments of cassava lines for resistance to anthracnose disease caused by Colletotrichum gloeosporioides f.sp. manihotis. Fokunang CN; Dixon AG; Ikotun T; Asiedu R; Tembe EA; Akem CN Mycopathologia; 2002; 154(4):191-8. PubMed ID: 12206320 [TBL] [Abstract][Full Text] [Related]
9. Computational identification of microRNAs and their targets in cassava (Manihot esculenta Crantz.). Patanun O; Lertpanyasampatha M; Sojikul P; Viboonjun U; Narangajavana J Mol Biotechnol; 2013 Mar; 53(3):257-69. PubMed ID: 22388699 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of rice thaumatin-like protein ( Odeny Ojola P; Nyaboga EN; Njiru PN; Orinda G J Genet Eng Biotechnol; 2018 Jun; 16(1):125-131. PubMed ID: 30647714 [TBL] [Abstract][Full Text] [Related]
11. Host-induced silencing of the Colletotrichum gloeosporioides conidial morphology 1 gene (CgCOM1) confers resistance against Anthracnose disease in chilli and tomato. Mahto BK; Singh A; Pareek M; Rajam MV; Dhar-Ray S; Reddy PM Plant Mol Biol; 2020 Nov; 104(4-5):381-395. PubMed ID: 32803478 [TBL] [Abstract][Full Text] [Related]
12. Can-miRn37a mediated suppression of ethylene response factors enhances the resistance of chilli against anthracnose pathogen Colletotrichum truncatum L. Mishra R; Mohanty JN; Chand SK; Joshi RK Plant Sci; 2018 Feb; 267():135-147. PubMed ID: 29362092 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection. Allie F; Pierce EJ; Okoniewski MJ; Rey C BMC Genomics; 2014 Nov; 15():1006. PubMed ID: 25412561 [TBL] [Abstract][Full Text] [Related]
15. A dual RNA-seq analyses revealed dynamic arms race during the invasion of walnut by Colletotrichum gloeosporioides. Li X; Dong Y; Yu H; Zhao J; Yang F; Song W; Wang C; Liu J; Liang Q; Wang Y; Yang KQ; Fang H BMC Plant Biol; 2024 Jul; 24(1):653. PubMed ID: 38987678 [TBL] [Abstract][Full Text] [Related]
16. Global mRNA and microRNA expression dynamics in response to anthracnose infection in sorghum. Fu F; Girma G; Mengiste T BMC Genomics; 2020 Nov; 21(1):760. PubMed ID: 33143636 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis of infected cassava root transcriptomics reveals candidate genes for root rot disease resistance. Hohenfeld CS; de Oliveira SAS; Ferreira CF; Mello VH; Margarido GRA; Passos AR; de Oliveira EJ Sci Rep; 2024 May; 14(1):10587. PubMed ID: 38719851 [TBL] [Abstract][Full Text] [Related]
18. Identification and expression of genes in response to cassava bacterial blight infection. Tappiban P; Sraphet S; Srisawad N; Smith DR; Triwitayakorn K J Appl Genet; 2018 Nov; 59(4):391-403. PubMed ID: 30039242 [TBL] [Abstract][Full Text] [Related]
19. Expression Profile of Stress-responsive Arabidopsis thaliana miRNAs and their Target Genes in Response to Inoculation with Pectobacterium carotovorum subsp. carotovorum. Djami-Tchatchou AT; Ntushelo K Pak J Biol Sci; 2017; 20(3):147-153. PubMed ID: 29023006 [TBL] [Abstract][Full Text] [Related]
20. Identification of Regulatory Networks of MicroRNAs and Their Targets in Response to Jeyaraj A; Wang X; Wang S; Liu S; Zhang R; Wu A; Wei C Front Plant Sci; 2019; 10():1096. PubMed ID: 31572415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]