These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25463012)

  • 1. The mannoprotein TIR3 (CAGL0C03872g) is required for sterol uptake in Candida glabrata.
    Inukai T; Nagi M; Morita A; Tanabe K; Aoyama T; Miyazaki Y; Bard M; Nakayama H
    Biochim Biophys Acta; 2015 Feb; 1851(2):141-51. PubMed ID: 25463012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription factors CgUPC2A and CgUPC2B regulate ergosterol biosynthetic genes in Candida glabrata.
    Nagi M; Nakayama H; Tanabe K; Bard M; Aoyama T; Okano M; Higashi S; Ueno K; Chibana H; Niimi M; Yamagoe S; Umeyama T; Kajiwara S; Ohno H; Miyazaki Y
    Genes Cells; 2011 Jan; 16(1):80-9. PubMed ID: 21199190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Candida glabrata putative sterol transporter gene CgAUS1 protects cells against azoles in the presence of serum.
    Nakayama H; Tanabe K; Bard M; Hodgson W; Wu S; Takemori D; Aoyama T; Kumaraswami NS; Metzler L; Takano Y; Chibana H; Niimi M
    J Antimicrob Chemother; 2007 Dec; 60(6):1264-72. PubMed ID: 17913716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serum cholesterol promotes the growth of Candida glabrata in the presence of fluconazole.
    Nagi M; Tanabe K; Nakayama H; Yamagoe S; Umeyama T; Oura T; Ohno H; Kajiwara S; Miyazaki Y
    J Infect Chemother; 2013 Feb; 19(1):138-43. PubMed ID: 23233084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of sterol import under aerobic and anaerobic conditions in three fungal species, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae.
    Zavrel M; Hoot SJ; White TC
    Eukaryot Cell; 2013 May; 12(5):725-38. PubMed ID: 23475705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sterol uptake and sterol biosynthesis act coordinately to mediate antifungal resistance in Candida glabrata under azole and hypoxic stress.
    Li QQ; Tsai HF; Mandal A; Walker BA; Noble JA; Fukuda Y; Bennett JE
    Mol Med Rep; 2018 May; 17(5):6585-6597. PubMed ID: 29532896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss-of-Function
    Ollinger TL; Vu B; Murante D; Parker JE; Simonicova L; Doorley L; Stamnes MA; Kelly SL; Rogers PD; Moye-Rowley WS; Krysan DJ
    mSphere; 2021 Dec; 6(6):e0083021. PubMed ID: 34935446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sterol uptake in Candida glabrata: rescue of sterol auxotrophic strains.
    Bard M; Sturm AM; Pierson CA; Brown S; Rogers KM; Nabinger S; Eckstein J; Barbuch R; Lees ND; Howell SA; Hazen KC
    Diagn Microbiol Infect Dis; 2005 Aug; 52(4):285-93. PubMed ID: 15893902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.
    Vermitsky JP; Earhart KD; Smith WL; Homayouni R; Edlind TD; Rogers PD
    Mol Microbiol; 2006 Aug; 61(3):704-22. PubMed ID: 16803598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Candida glabrata Upc2A transcription factor is a global regulator of antifungal drug resistance pathways.
    Vu BG; Stamnes MA; Li Y; Rogers PD; Moye-Rowley WS
    PLoS Genet; 2021 Sep; 17(9):e1009582. PubMed ID: 34591857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The yeast anaerobic response element AR1b regulates aerobic antifungal drug-dependent sterol gene expression.
    Gallo-Ebert C; Donigan M; Liu HY; Pascual F; Manners M; Pandya D; Swanson R; Gallagher D; Chen W; Carman GM; Nickels JT
    J Biol Chem; 2013 Dec; 288(49):35466-77. PubMed ID: 24163365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Candida glabrata sterol scavenging mechanism, mediated by the ATP-binding cassette transporter Aus1p, is regulated by iron limitation.
    Nagi M; Tanabe K; Ueno K; Nakayama H; Aoyama T; Chibana H; Yamagoe S; Umeyama T; Oura T; Ohno H; Kajiwara S; Miyazaki Y
    Mol Microbiol; 2013 Apr; 88(2):371-81. PubMed ID: 23448689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast.
    Marek M; Silvestro D; Fredslund MD; Andersen TG; Pomorski TG
    FEMS Yeast Res; 2014 Dec; 14(8):1223-33. PubMed ID: 25331273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local silencing controls the oxidative stress response and the multidrug resistance in Candida glabrata.
    Orta-Zavalza E; Guerrero-Serrano G; Gutiérrez-Escobedo G; Cañas-Villamar I; Juárez-Cepeda J; Castaño I; De Las Peñas A
    Mol Microbiol; 2013 Jun; 88(6):1135-48. PubMed ID: 23651300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria.
    Kaur R; Castaño I; Cormack BP
    Antimicrob Agents Chemother; 2004 May; 48(5):1600-13. PubMed ID: 15105111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation of the CgPDR16 gene attenuates azole tolerance and biofilm production in pathogenic Candida glabrata.
    Culakova H; Dzugasova V; Perzelova J; Gbelska Y; Subik J
    Yeast; 2013 Oct; 30(10):403-14. PubMed ID: 23939632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Candida glabrata erg1 mutant with increased sensitivity to azoles and to low oxygen tension.
    Tsai HF; Bard M; Izumikawa K; Krol AA; Sturm AM; Culbertson NT; Pierson CA; Bennett JE
    Antimicrob Agents Chemother; 2004 Jul; 48(7):2483-9. PubMed ID: 15215098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Molecular mechanisms of fluconazole resistance in clinical isolates of Candida glabrata].
    Shen YZ; Lu HZ; Zhang YX
    Zhonghua Nei Ke Za Zhi; 2010 Mar; 49(3):245-9. PubMed ID: 20450660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in the CgPDR1 and CgERG11 genes in azole-resistant Candida glabrata clinical isolates from Slovakia.
    Berila N; Borecka S; Dzugasova V; Bojnansky J; Subik J
    Int J Antimicrob Agents; 2009 Jun; 33(6):574-8. PubMed ID: 19196495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae.
    Abramova N; Sertil O; Mehta S; Lowry CV
    J Bacteriol; 2001 May; 183(9):2881-7. PubMed ID: 11292809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.