These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 25463177)

  • 41. Single-crystalline metal germanate nanowire-carbon textiles as binder-free, self-supported anodes for high-performance lithium storage.
    Li W; Wang X; Liu B; Xu J; Liang B; Luo T; Luo S; Chen D; Shen G
    Nanoscale; 2013 Nov; 5(21):10291-9. PubMed ID: 24056774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries.
    Li L; Cabán-Acevedo M; Girard SN; Jin S
    Nanoscale; 2014 Feb; 6(4):2112-8. PubMed ID: 24441761
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Graphene-based nanowire supercapacitors.
    Chen Z; Yu D; Xiong W; Liu P; Liu Y; Dai L
    Langmuir; 2014 Apr; 30(12):3567-71. PubMed ID: 24588395
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An interwoven network of MnO₂ nanowires and carbon nanotubes as the anode for bendable lithium-ion batteries.
    Ee SJ; Pang H; Mani U; Yan Q; Ting SL; Chen P
    Chemphyschem; 2014 Aug; 15(12):2445-9. PubMed ID: 24888436
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Operando X-ray scattering and spectroscopic analysis of germanium nanowire anodes in lithium ion batteries.
    Silberstein KE; Lowe MA; Richards B; Gao J; Hanrath T; Abruña HD
    Langmuir; 2015 Feb; 31(6):2028-35. PubMed ID: 25616130
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-performance lithium battery anodes using silicon nanowires.
    Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y
    Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrodeposited three-dimensional Ni-Si nanocable arrays as high performance anodes for lithium ion batteries.
    Liu H; Hu L; Meng YS; Li Q
    Nanoscale; 2013 Nov; 5(21):10376-83. PubMed ID: 24057142
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Viologens as charge carriers in a polymer-based battery anode.
    Sen S; Saraidaridis J; Kim SY; Palmore GT
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7825-30. PubMed ID: 23927403
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes.
    Chen X; Zhu H; Chen YC; Shang Y; Cao A; Hu L; Rubloff GW
    ACS Nano; 2012 Sep; 6(9):7948-55. PubMed ID: 22871063
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.
    Shen L; Shen L; Wang Z; Chen L
    ChemSusChem; 2014 Jul; 7(7):1951-6. PubMed ID: 24782265
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries.
    Fu Y; Su YS; Manthiram A
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6046-52. PubMed ID: 23092250
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ALD TiO2 coated silicon nanowires for lithium ion battery anodes with enhanced cycling stability and coulombic efficiency.
    Memarzadeh Lotfabad E; Kalisvaart P; Cui K; Kohandehghan A; Kupsta M; Olsen B; Mitlin D
    Phys Chem Chem Phys; 2013 Aug; 15(32):13646-57. PubMed ID: 23836149
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance.
    Li W; Zhang Q; Zheng G; Seh ZW; Yao H; Cui Y
    Nano Lett; 2013; 13(11):5534-40. PubMed ID: 24127640
    [TBL] [Abstract][Full Text] [Related]  

  • 54. V
    Zhang Y; Wang Y; Xiong Z; Hu Y; Song W; Huang QA; Cheng X; Chen LQ; Sun C; Gu H
    ACS Omega; 2017 Mar; 2(3):793-799. PubMed ID: 31457471
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.
    Patel SN; Javier AE; Balsara NP
    ACS Nano; 2013 Jul; 7(7):6056-68. PubMed ID: 23789816
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Amorphous Vanadium Oxide/Carbon Composite Positive Electrode for Rechargeable Aluminum Battery.
    Chiku M; Takeda H; Matsumura S; Higuchi E; Inoue H
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24385-9. PubMed ID: 26489385
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries.
    Cao FF; Xin S; Guo YG; Wan LJ
    Phys Chem Chem Phys; 2011 Feb; 13(6):2014-20. PubMed ID: 21203647
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrathin Nanotube/Nanowire Electrodes by Spin-Spray Layer-by-Layer Assembly: A Concept for Transparent Energy Storage.
    Gittleson FS; Hwang D; Ryu WH; Hashmi SM; Hwang J; Goh T; Taylor AD
    ACS Nano; 2015 Oct; 9(10):10005-17. PubMed ID: 26344174
    [TBL] [Abstract][Full Text] [Related]  

  • 59. V
    Aliahmad N; Liu Y; Xie J; Agarwal M
    ACS Appl Mater Interfaces; 2018 May; 10(19):16490-16499. PubMed ID: 29688002
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries.
    Li D; Tian M; Xie R; Li Q; Fan X; Gou L; Zhao P; Ma S; Shi Y; Yong HT
    Nanoscale; 2014 Mar; 6(6):3302-8. PubMed ID: 24510276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.