BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25463380)

  • 1. Carbohydrate nanotechnology: hierarchical assembly using nature's other information carrying biopolymers.
    Han X; Zheng Y; Munro CJ; Ji Y; Braunschweig AB
    Curr Opin Biotechnol; 2015 Aug; 34():41-7. PubMed ID: 25463380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biopolymer-based materials: the nanoscale components and their hierarchical assembly.
    Payne GF
    Curr Opin Chem Biol; 2007 Apr; 11(2):214-9. PubMed ID: 17293158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring and Controlling the Polymorphism in Supramolecular Assemblies of Carbohydrates and Proteins.
    Gao C; Chen G
    Acc Chem Res; 2020 Apr; 53(4):740-751. PubMed ID: 32174104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications.
    Verma ML; Dhanya BS; Sukriti ; Rani V; Thakur M; Jeslin J; Kushwaha R
    Int J Biol Macromol; 2020 Jul; 154():390-412. PubMed ID: 32194126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials.
    Mendes AC; Baran ET; Reis RL; Azevedo HS
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(6):582-612. PubMed ID: 23929805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailored glycopolymers: controlling the carbohydrate-protein interaction based on template effect.
    Nagahori N; Nishimura S
    Biomacromolecules; 2001; 2(1):22-4. PubMed ID: 11749149
    [No Abstract]   [Full Text] [Related]  

  • 7. Carbohydrates in peptide and protein design.
    Jensen KJ; Brask J
    Biopolymers; 2005; 80(6):747-61. PubMed ID: 15929028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide alpha-helices for synthetic nanostructures.
    Ryadnov MG
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):487-91. PubMed ID: 17511635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubule-based nanomaterials: Exploiting nature's dynamic biopolymers.
    Bachand GD; Spoerke ED; Stevens MJ
    Biotechnol Bioeng; 2015 Jun; 112(6):1065-73. PubMed ID: 25728349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein self-assembly via supramolecular strategies.
    Bai Y; Luo Q; Liu J
    Chem Soc Rev; 2016 May; 45(10):2756-67. PubMed ID: 27080059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular architectures generated by self-assembly of guanosine derivatives.
    Davis JT; Spada GP
    Chem Soc Rev; 2007 Feb; 36(2):296-313. PubMed ID: 17264931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering structure and function using thermoresponsive biopolymers.
    Pastuszka MK; MacKay JA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016; 8(1):123-38. PubMed ID: 26112277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbohydrates in Supramolecular Chemistry.
    Delbianco M; Bharate P; Varela-Aramburu S; Seeberger PH
    Chem Rev; 2016 Feb; 116(4):1693-752. PubMed ID: 26702928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gigadalton-scale shape-programmable DNA assemblies.
    Wagenbauer KF; Sigl C; Dietz H
    Nature; 2017 Dec; 552(7683):78-83. PubMed ID: 29219966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-directed protein self-assembly.
    Salgado EN; Radford RJ; Tezcan FA
    Acc Chem Res; 2010 May; 43(5):661-72. PubMed ID: 20192262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic potential of carbohydrate-based polymeric and nanoparticle systems.
    Sunasee R; Adokoh CK; Darkwa J; Narain R
    Expert Opin Drug Deliv; 2014 Jun; 11(6):867-84. PubMed ID: 24666000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Carbohydrate Microarrays by Boronate Formation.
    Adak AK; Lin TW; Li BY; Lin CC
    Methods Mol Biol; 2017; 1518():43-53. PubMed ID: 27873199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel biopolymers for drug discovery.
    Moran EJ; Wilson TE; Cho CY; Cherry SR; Schultz PG
    Biopolymers; 1995; 37(3):213-9. PubMed ID: 7718743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosylated Conductive Polymer: A Multimodal Biointerface for Studying Carbohydrate-Protein Interactions.
    Zeng X; Qu K; Rehman A
    Acc Chem Res; 2016 Sep; 49(9):1624-33. PubMed ID: 27524389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cantilever array sensors detect specific carbohydrate-protein interactions with picomolar sensitivity.
    Gruber K; Horlacher T; Castelli R; Mader A; Seeberger PH; Hermann BA
    ACS Nano; 2011 May; 5(5):3670-8. PubMed ID: 21388220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.