BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 25463394)

  • 1. NER enzymes maintain genome integrity and suppress homologous recombination in the absence of exogenously induced DNA damage in Pseudomonas putida.
    Sidorenko J; Ukkivi K; Kivisaar M
    DNA Repair (Amst); 2015 Jan; 25():15-26. PubMed ID: 25463394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual role of NER in mutagenesis in Pseudomonas putida.
    Tark M; Tover A; Koorits L; Tegova R; Kivisaar M
    DNA Repair (Amst); 2008 Jan; 7(1):20-30. PubMed ID: 17720631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of transcription-coupled repair factor Mfd and DNA helicase UvrD in mutational processes in Pseudomonas putida.
    Ukkivi K; Kivisaar M
    DNA Repair (Amst); 2018 Dec; 72():18-27. PubMed ID: 30292721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida.
    Saumaa S; Tover A; Tark M; Tegova R; Kivisaar M
    J Bacteriol; 2007 Aug; 189(15):5504-14. PubMed ID: 17545288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homologous recombination is facilitated in starving populations of Pseudomonas putida by phenol stress and affected by chromosomal location of the recombination target.
    Tavita K; Mikkel K; Tark-Dame M; Jerabek H; Teras R; Sidorenko J; Tegova R; Tover A; Dame RT; Kivisaar M
    Mutat Res; 2012 Sep; 737(1-2):12-24. PubMed ID: 22917545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UvrA and UvrB suppress illegitimate recombination: synergistic action with RecQ helicase.
    Hanada K; Iwasaki M; Ihashi S; Ikeda H
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5989-94. PubMed ID: 10811888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing Mfd- and UvrD-dependent models of transcription coupled DNA repair in live Escherichia coli using single-molecule tracking.
    Kaja E; Vijande D; Kowalczyk J; Michalak M; Gapiński J; Kobras C; Rolfe P; Stracy M
    DNA Repair (Amst); 2024 May; 137():103665. PubMed ID: 38513450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA damage response and transcription.
    Lagerwerf S; Vrouwe MG; Overmeer RM; Fousteri MI; Mullenders LH
    DNA Repair (Amst); 2011 Jul; 10(7):743-50. PubMed ID: 21622031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time investigation of the roles of ATP hydrolysis by UvrA and UvrB during DNA damage recognition in nucleotide excision repair.
    Kraithong T; Sucharitakul J; Buranachai C; Jeruzalmi D; Chaiyen P; Pakotiprapha D
    DNA Repair (Amst); 2021 Jan; 97():103024. PubMed ID: 33302090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Polymerases ImuC and DinB Are Involved in DNA Alkylation Damage Tolerance in Pseudomonas aeruginosa and Pseudomonas putida.
    Jatsenko T; Sidorenko J; Saumaa S; Kivisaar M
    PLoS One; 2017; 12(1):e0170719. PubMed ID: 28118378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation and rate enhancement during transcription-coupled DNA repair.
    Manelyte L; Kim YI; Smith AJ; Smith RM; Savery NJ
    Mol Cell; 2010 Dec; 40(5):714-24. PubMed ID: 21145481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of specialized DNA polymerases Pol II, Pol IV and DnaE2 in DNA replication in the absence of Pol I in Pseudomonas putida.
    Sidorenko J; Jatsenko T; Saumaa S; Teras R; Tark-Dame M; Hõrak R; Kivisaar M
    Mutat Res; 2011 Sep; 714(1-2):63-77. PubMed ID: 21763330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NHEJ enzymes LigD and Ku participate in stationary-phase mutagenesis in Pseudomonas putida.
    Paris Ü; Mikkel K; Tavita K; Saumaa S; Teras R; Kivisaar M
    DNA Repair (Amst); 2015 Jul; 31():11-8. PubMed ID: 25942369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule live-cell imaging visualizes parallel pathways of prokaryotic nucleotide excision repair.
    Ghodke H; Ho HN; van Oijen AM
    Nat Commun; 2020 Mar; 11(1):1477. PubMed ID: 32198385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between UvrA and UvrB: the role of UvrB's domain 2 in nucleotide excision repair.
    Truglio JJ; Croteau DL; Skorvaga M; DellaVecchia MJ; Theis K; Mandavilli BS; Van Houten B; Kisker C
    EMBO J; 2004 Jul; 23(13):2498-509. PubMed ID: 15192705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repairing of N-mustard derivative BO-1055 induced DNA damage requires NER, HR, and MGMT-dependent DNA repair mechanisms.
    Kuo CY; Chou WC; Wu CC; Wong TS; Kakadiya R; Lee TC; Su TL; Wang HC
    Oncotarget; 2015 Sep; 6(28):25770-83. PubMed ID: 26208482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled degradation by ClpXP protease tunes the levels of the excision repair protein UvrA to the extent of DNA damage.
    Pruteanu M; Baker TA
    Mol Microbiol; 2009 Feb; 71(4):912-24. PubMed ID: 19183285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic characterization of the nucleotide excision repair system of Neisseria gonorrhoeae.
    LeCuyer BE; Criss AK; Seifert HS
    J Bacteriol; 2010 Feb; 192(3):665-73. PubMed ID: 19933360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule imaging reveals molecular coupling between transcription and DNA repair machinery in live cells.
    Ho HN; van Oijen AM; Ghodke H
    Nat Commun; 2020 Mar; 11(1):1478. PubMed ID: 32198374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement of the β-hairpin in the third zinc-binding module of UvrA is required for DNA damage recognition.
    Kraithong T; Channgam K; Itsathitphaisarn O; Tiensuwan M; Jeruzalmi D; Pakotiprapha D
    DNA Repair (Amst); 2017 Mar; 51():60-69. PubMed ID: 28209516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.