These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25463561)

  • 1. The role of sub-second neural events in spontaneous brain activity.
    Florin E; Watanabe M; Logothetis NK
    Curr Opin Neurobiol; 2015 Jun; 32():24-30. PubMed ID: 25463561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluctuations of the EEG-fMRI correlation reflect intrinsic strength of functional connectivity in default mode network.
    Keinänen T; Rytky S; Korhonen V; Huotari N; Nikkinen J; Tervonen O; Palva JM; Kiviniemi V
    J Neurosci Res; 2018 Oct; 96(10):1689-1698. PubMed ID: 29761531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disparity in temporal and spatial relationships between resting-state electrophysiological and fMRI signals.
    Tu W; Cramer SR; Zhang N
    Elife; 2024 Aug; 13():. PubMed ID: 39102347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the electrophysiological basis of resting state networks using magnetoencephalography.
    Brookes MJ; Woolrich M; Luckhoo H; Price D; Hale JR; Stephenson MC; Barnes GR; Smith SM; Morris PG
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16783-8. PubMed ID: 21930901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG spatiospectral patterns and their link to fMRI BOLD signal via variable hemodynamic response functions.
    Labounek R; Bridwell DA; Mareček R; Lamoš M; Mikl M; Bednařík P; Baštinec J; Slavíček T; Hluštík P; Brázdil M; Jan J
    J Neurosci Methods; 2019 Apr; 318():34-46. PubMed ID: 30802472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks.
    Musso F; Brinkmeyer J; Mobascher A; Warbrick T; Winterer G
    Neuroimage; 2010 Oct; 52(4):1149-61. PubMed ID: 20139014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroscale variation in resting-state neuronal activity and connectivity assessed by simultaneous calcium imaging, hemodynamic imaging and electrophysiology.
    Murphy MC; Chan KC; Kim SG; Vazquez AL
    Neuroimage; 2018 Apr; 169():352-362. PubMed ID: 29277650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dynamic system of brain networks revealed by fast transient EEG fluctuations and their fMRI correlates.
    Hunyadi B; Woolrich MW; Quinn AJ; Vidaurre D; De Vos M
    Neuroimage; 2019 Jan; 185():72-82. PubMed ID: 30287299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opportunities and methodological challenges in EEG and MEG resting state functional brain network research.
    van Diessen E; Numan T; van Dellen E; van der Kooi AW; Boersma M; Hofman D; van Lutterveld R; van Dijk BW; van Straaten EC; Hillebrand A; Stam CJ
    Clin Neurophysiol; 2015 Aug; 126(8):1468-81. PubMed ID: 25511636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated MEG/EEG and fMRI model based on neural masses.
    Babajani A; Soltanian-Zadeh H
    IEEE Trans Biomed Eng; 2006 Sep; 53(9):1794-801. PubMed ID: 16941835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinctive time-lagged resting-state networks revealed by simultaneous EEG-fMRI.
    Feige B; Spiegelhalder K; Kiemen A; Bosch OG; Tebartz van Elst L; Hennig J; Seifritz E; Riemann D
    Neuroimage; 2017 Jan; 145(Pt A):1-10. PubMed ID: 27637863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A NIRS-fMRI study of resting state network.
    Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G
    Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network Configurations in the Human Brain Reflect Choice Bias during Rapid Face Processing.
    Tu T; Schneck N; Muraskin J; Sajda P
    J Neurosci; 2017 Dec; 37(50):12226-12237. PubMed ID: 29118108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting haemodynamic networks using electrophysiology: The role of non-linear and cross-frequency interactions.
    Tewarie P; Bright MG; Hillebrand A; Robson SE; Gascoyne LE; Morris PG; Meier J; Van Mieghem P; Brookes MJ
    Neuroimage; 2016 Apr; 130():273-292. PubMed ID: 26827811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of the neurovascular coupling in epileptic discharges.
    Voges N; Blanchard S; Wendling F; David O; Benali H; Papadopoulo T; Clerc M; Bénar C
    Brain Topogr; 2012 Apr; 25(2):136-56. PubMed ID: 21706377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing dynamic causal models of neurovascular coupling with fMRI and EEG/MEG.
    Jafarian A; Litvak V; Cagnan H; Friston KJ; Zeidman P
    Neuroimage; 2020 Aug; 216():116734. PubMed ID: 32179105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BOLD correlates of EEG topography reveal rapid resting-state network dynamics.
    Britz J; Van De Ville D; Michel CM
    Neuroimage; 2010 Oct; 52(4):1162-70. PubMed ID: 20188188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.