BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 25463677)

  • 1. Photobleaching of the resonance Raman lines of cytochromes in living yeast cells.
    Okotrub KA; Surovtsev NV
    J Photochem Photobiol B; 2014 Dec; 141():269-74. PubMed ID: 25463677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of glycerol on photobleaching of cytochrome Raman lines in frozen yeast cells.
    Okotrub KA; Surovtsev NV
    Eur Biophys J; 2018 Sep; 47(6):655-662. PubMed ID: 29704025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox State of Cytochromes in Frozen Yeast Cells Probed by Resonance Raman Spectroscopy.
    Okotrub KA; Surovtsev NV
    Biophys J; 2015 Dec; 109(11):2227-34. PubMed ID: 26636934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Casting new physicochemical light on the fundamental biological processes in single living cells by using Raman microspectroscopy.
    Kaliaperumal V; Hamaguchi HO
    Chem Rec; 2012 Dec; 12(6):567-80. PubMed ID: 23129551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman quantification of the redox state of cytochromes b and c in-vivo and in-vitro.
    Kakita M; Kaliaperumal V; Hamaguchi HO
    J Biophotonics; 2012 Jan; 5(1):20-4. PubMed ID: 22076935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gated electron transfer of yeast iso-1 cytochrome c on self-assembled monolayer-coated electrodes.
    Feng JJ; Murgida DH; Kuhlmann U; Utesch T; Mroginski MA; Hildebrandt P; Weidinger IM
    J Phys Chem B; 2008 Nov; 112(47):15202-11. PubMed ID: 18975895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photobleaching of the "Raman spectroscopic signature of life" and mitochondrial activity in rho- budding yeast cells.
    Onogi C; Hamaguchi HO
    J Phys Chem B; 2009 Aug; 113(31):10942-5. PubMed ID: 19601610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman spectroscopic identification of a histidine ligand of b595 and the nature of the ligation of chlorin d in the fully reduced Escherichia coli cytochrome bd oxidase.
    Sun J; Kahlow MA; Kaysser TM; Osborne JP; Hill JJ; Rohlfs RJ; Hille R; Gennis RB; Loehr TM
    Biochemistry; 1996 Feb; 35(7):2403-12. PubMed ID: 8652583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Differentiation between 2 cytochrome-a-components, 3 cytochrome-b-components and hemoglobin in yeast cells].
    Kuschmitz D; Hess B
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1543. PubMed ID: 4346465
    [No Abstract]   [Full Text] [Related]  

  • 10. Single-molecule detection of yeast cytochrome c by Surface-Enhanced Raman Spectroscopy.
    Delfino I; Bizzarri AR; Cannistraro S
    Biophys Chem; 2005 Jan; 113(1):41-51. PubMed ID: 15617809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using redox-sensitive mitochondrial cytochrome Raman bands for label-free detection of mitochondrial dysfunction.
    Morimoto T; Chiu LD; Kanda H; Kawagoe H; Ozawa T; Nakamura M; Nishida K; Fujita K; Fujikado T
    Analyst; 2019 Apr; 144(8):2531-2540. PubMed ID: 30839952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient and time-resolved resonance Raman investigation of photoinitiated electron transfer in ruthenated cytochromes c.
    Simpson MC; Millett F; Pan LP; Larsen RW; Hobbs JD; Fan B; Ondrias MR
    Biochemistry; 1996 Aug; 35(31):10019-30. PubMed ID: 8756464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of low temperatures on cytochrome photoresponse in mouse embryos.
    Sazhina EA; Okotrub KA; Amstislavsky SY; Surovtsev NV
    Arch Biochem Biophys; 2019 Jul; 669():32-38. PubMed ID: 31128967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer kinetics of cytochrome c probed by time-resolved surface-enhanced resonance Raman spectroscopy.
    Grosserueschkamp M; Friedrich MG; Plum M; Knoll W; Naumann RL
    J Phys Chem B; 2009 Feb; 113(8):2492-7. PubMed ID: 19191512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evanescent-field-induced Raman scattering for bio-friendly fingerprinting at sub-cellular dimension.
    Snopok B; Naumenko D; Serviene E; Bruzaite I; Stogrin A; Kulys J; Snitka V
    Talanta; 2014 Oct; 128():414-21. PubMed ID: 25059180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fingerprinting redox and ligand states in haemprotein crystal structures using resonance Raman spectroscopy.
    Kekilli D; Dworkowski FS; Pompidor G; Fuchs MR; Andrew CR; Antonyuk S; Strange RW; Eady RR; Hasnain SS; Hough MA
    Acta Crystallogr D Biol Crystallogr; 2014 May; 70(Pt 5):1289-96. PubMed ID: 24816098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron-transfer processes of cytochrome C at interfaces. New insights by surface-enhanced resonance Raman spectroscopy.
    Murgida DH; Hildebrandt P
    Acc Chem Res; 2004 Nov; 37(11):854-61. PubMed ID: 15612675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of the redox states of cytochromes in a living L929 (NCTC) cell by resonance Raman microspectroscopy.
    Kakita M; Okuno M; Hamaguchi HO
    J Biophotonics; 2013 Mar; 6(3):256-9. PubMed ID: 22573518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman/absorption characterization of the oxo intermediates of cytochrome c oxidase generated in its reaction with hydrogen peroxide: pH and H2O2 concentration dependence.
    Proshlyakov DA; Ogura T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    Biochemistry; 1996 Jul; 35(26):8580-6. PubMed ID: 8679619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.