These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25463725)

  • 1. Multi-walled carbon nanotube dispersion by the adsorbed humic acids with different chemical structures.
    Zhang D; Pan B; Cook RL; Xing B
    Environ Pollut; 2015 Jan; 196():292-99. PubMed ID: 25463725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes.
    Shi B; Zhuang X; Yan X; Lu J; Tang H
    J Environ Sci (China); 2010; 22(8):1195-202. PubMed ID: 21179958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term colloidal stability of 10 carbon nanotube types in the absence/presence of humic acid and calcium.
    Schwyzer I; Kaegi R; Sigg L; Smajda R; Magrez A; Nowack B
    Environ Pollut; 2012 Oct; 169():64-73. PubMed ID: 22683482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption of humic acid to functionalized multi-walled carbon nanotubes.
    Wang F; Yao J; Chen H; Yi Z; Xing B
    Environ Pollut; 2013 Sep; 180():1-6. PubMed ID: 23711903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersion state and humic acids concentration-dependent sorption of pyrene to carbon nanotubes.
    Zhang X; Kah M; Jonker MT; Hofmann T
    Environ Sci Technol; 2012 Jul; 46(13):7166-73. PubMed ID: 22656042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suspending multi-walled carbon nanotubes by humic acids from a peat soil.
    Zhou X; Shu L; Zhao H; Guo X; Wang X; Tao S; Xing B
    Environ Sci Technol; 2012 Apr; 46(7):3891-7. PubMed ID: 22376064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased adsorption of sulfamethoxazole on suspended carbon nanotubes by dissolved humic acid.
    Pan B; Zhang D; Li H; Wu M; Wang Z; Xing B
    Environ Sci Technol; 2013 Jul; 47(14):7722-8. PubMed ID: 23742687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions.
    Lin D; Xing B
    Environ Sci Technol; 2008 Aug; 42(16):5917-23. PubMed ID: 18767645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption.
    Schierz A; Zänker H
    Environ Pollut; 2009 Apr; 157(4):1088-94. PubMed ID: 19010575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size characterization of the associations between carbon nanotubes and humic acids in aqueous media by asymmetrical flow field-flow fractionation combined with multi-angle light scattering.
    Gigault J; Grassl B; Lespes G
    Chemosphere; 2012 Jan; 86(2):177-82. PubMed ID: 22079301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of phenanthrene, 2-naphthol, and 1-naphthylamine to colloidal oxidized multiwalled carbon nanotubes: effects of humic acid and surfactant modification.
    Hou L; Zhu D; Wang X; Wang L; Zhang C; Chen W
    Environ Toxicol Chem; 2013 Mar; 32(3):493-500. PubMed ID: 23212963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms and modeling of halogenated aliphatic contaminant adsorption by carbon nanotubes.
    Apul OG; Zhou Y; Karanfil T
    J Hazard Mater; 2015 Sep; 295():138-44. PubMed ID: 25897695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the heterogeneous adsorption of humic acid fluorescent components on multi-walled carbon nanotubes by excitation-emission matrix and parallel factor analysis.
    Yang C; Liu Y; Cen Q; Zhu Y; Zhang Y
    Ecotoxicol Environ Saf; 2018 Feb; 148():194-200. PubMed ID: 29055203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the initial state of carbon nanotubes on their colloidal stability under natural conditions.
    Schwyzer I; Kaegi R; Sigg L; Magrez A; Nowack B
    Environ Pollut; 2011 Jun; 159(6):1641-8. PubMed ID: 21435759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of humic acids on sorption of alkanes by carbon nanotubes--implications for the dominant sorption mode.
    Hüffer T; Schroth S; Schmidt TC
    Chemosphere; 2015 Jan; 119():1169-1175. PubMed ID: 25460758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of DOM adsorption of CNTs by using excitation-emission matrix fluorescence spectroscopy and multiway analysis.
    Peng M; Li H; Li D; Du E; Li Z
    Environ Technol; 2017 Jun; 38(11):1351-1361. PubMed ID: 27602945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of Triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions.
    Bai Y; Lin D; Wu F; Wang Z; Xing B
    Chemosphere; 2010 Apr; 79(4):362-7. PubMed ID: 20206374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances.
    Chappell MA; George AJ; Dontsova KM; Porter BE; Price CL; Zhou P; Morikawa E; Kennedy AJ; Steevens JA
    Environ Pollut; 2009 Apr; 157(4):1081-7. PubMed ID: 19000646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of Escherichia coli planktonic cells by multi-walled carbon nanotubes in suspensions: Effect of surface functionalization coupled with medium nutrition level.
    Chi MF; Wu WL; Du Y; Chin CM; Lin CC
    J Hazard Mater; 2016 Nov; 318():507-514. PubMed ID: 27450343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption mechanisms of organic chemicals on carbon nanotubes.
    Pan B; Xing B
    Environ Sci Technol; 2008 Dec; 42(24):9005-13. PubMed ID: 19174865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.