These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 25463775)
1. Change of pH during excess sludge fermentation under alkaline, acidic and neutral conditions. Yuan Y; Peng Y; Liu Y; Jin B; Wang B; Wang S Bioresour Technol; 2014 Dec; 174():1-5. PubMed ID: 25463775 [TBL] [Abstract][Full Text] [Related]
2. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH. Zhang P; Chen Y; Zhou Q Water Res; 2009 Aug; 43(15):3735-42. PubMed ID: 19555988 [TBL] [Abstract][Full Text] [Related]
4. Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Liu H; Wang J; Liu X; Fu B; Chen J; Yu HQ Water Res; 2012 Mar; 46(3):799-807. PubMed ID: 22176743 [TBL] [Abstract][Full Text] [Related]
5. Hydrolysis and acidification of waste activated sludge at different pHs. Chen Y; Jiang S; Yuan H; Zhou Q; Gu G Water Res; 2007 Feb; 41(3):683-9. PubMed ID: 16987541 [TBL] [Abstract][Full Text] [Related]
6. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Yuan H; Chen Y; Zhang H; Jiang S; Zhou Q; Gu G Environ Sci Technol; 2006 Mar; 40(6):2025-9. PubMed ID: 16570631 [TBL] [Abstract][Full Text] [Related]
7. [Heat-alkaline treatment of excess sludge and the potential use of hydrolysate as nitrogen source for microbial lipid production]. Xu J; Oura T; Liu D; Kajiwara S Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):482-8. PubMed ID: 21650031 [TBL] [Abstract][Full Text] [Related]
8. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production. Zheng X; Su Y; Li X; Xiao N; Wang D; Chen Y Environ Sci Technol; 2013 May; 47(9):4262-8. PubMed ID: 23544425 [TBL] [Abstract][Full Text] [Related]
9. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
10. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment. Tong J; Chen Y Water Res; 2009 Jul; 43(12):2969-76. PubMed ID: 19443007 [TBL] [Abstract][Full Text] [Related]
11. Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors. Feng L; Wang H; Chen Y; Wang Q Bioresour Technol; 2009 Jan; 100(1):44-9. PubMed ID: 18595688 [TBL] [Abstract][Full Text] [Related]
12. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal. Li X; Chen H; Hu L; Yu L; Chen Y; Gu G Environ Sci Technol; 2011 Mar; 45(5):1834-9. PubMed ID: 21280571 [TBL] [Abstract][Full Text] [Related]
13. In-situ ammonia stripping with alkaline fermentation of waste activated sludge to improve short-chain fatty acids production and carbon source availability. Ye M; Luo J; Zhang S; Yang H; Li YY; Liu J Bioresour Technol; 2020 Apr; 301():122782. PubMed ID: 31958689 [TBL] [Abstract][Full Text] [Related]
14. Effect of temperature on short chain fatty acids (SCFAs) accumulation and microbiological transformation in sludge alkaline fermentation with Ca(OH)₂ adjustment. Li X; Peng Y; Ren N; Li B; Chai T; Zhang L Water Res; 2014 Sep; 61():34-45. PubMed ID: 24880243 [TBL] [Abstract][Full Text] [Related]
15. Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation. Tong J; Chen Y Environ Sci Technol; 2007 Oct; 41(20):7126-30. PubMed ID: 17993158 [TBL] [Abstract][Full Text] [Related]
16. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Mengmeng C; Hong C; Qingliang Z; Shirley SN; Jie R Bioresour Technol; 2009 Feb; 100(3):1399-405. PubMed ID: 18945612 [TBL] [Abstract][Full Text] [Related]
17. Alkaline fermentation of waste activated sludge with calcium hydroxide to improve short-chain fatty acids production and extraction efficiency via layered double hydroxides. Ma X; Ye J; Jiang L; Sheng L; Liu J; Li YY; Xu ZP Bioresour Technol; 2019 May; 279():117-123. PubMed ID: 30716603 [TBL] [Abstract][Full Text] [Related]
18. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0. Yan Y; Feng L; Zhang C; Wisniewski C; Zhou Q Water Res; 2010 Jun; 44(11):3329-36. PubMed ID: 20371095 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of pH regulation in carbohydrate-type municipal waste anaerobic co-fermentation: Roles of pH at acidic, neutral and alkaline conditions. Shi C; Ma J; Wu H; Luo J; Liu Y; Li K; Zhou Y; Wang K Sci Total Environ; 2022 Dec; 853():158327. PubMed ID: 36037891 [TBL] [Abstract][Full Text] [Related]
20. Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH. Chen Y; Liu K; Su Y; Zheng X; Wang Q Bioresour Technol; 2013 Jul; 140():97-102. PubMed ID: 23685363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]