These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 25463775)
21. Improved bioproduction of short-chain fatty acids from waste activated sludge by perennial ryegrass addition. Jia S; Dai X; Zhang D; Dai L; Wang R; Zhao J Water Res; 2013 Sep; 47(13):4576-84. PubMed ID: 23764607 [TBL] [Abstract][Full Text] [Related]
22. Intermittent pH control strategy in sludge anaerobic fermentation: Higher short-chain fatty acids production, lower alkali consumption, and simpler control. Liu J; Qiu S; Zhang L; He Q; Li X; Zhang Q; Peng Y Bioresour Technol; 2022 Feb; 345():126517. PubMed ID: 34920083 [TBL] [Abstract][Full Text] [Related]
23. Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A2O process. Gao Y; Peng Y; Zhang J; Wang S; Guo J; Ye L Bioresour Technol; 2011 Mar; 102(5):4091-7. PubMed ID: 21232933 [TBL] [Abstract][Full Text] [Related]
24. Stepwise alkaline treatment coupled with ammonia stripping to enhance short-chain fatty acids production from waste activated sludge. He ZW; Jin HY; Ren YX; Yang WJ; Tang CC; Yang CX; Zhou AJ; Liu WZ; Wang AJ Bioresour Technol; 2021 Dec; 341():125824. PubMed ID: 34450443 [TBL] [Abstract][Full Text] [Related]
25. Hydrolysis and acidification of waste-activated sludge in the presence of biosurfactant rhamnolipid: effect of pH. Luo K; Ye Q; Yi X; Yang Q; Li XM; Chen HB; Liu X; Zeng GM Appl Microbiol Biotechnol; 2013 Jun; 97(12):5597-604. PubMed ID: 22948955 [TBL] [Abstract][Full Text] [Related]
26. Utilization of alkali-tolerant strains in fermentation of excess sludge. Jie W; Peng Y; Ren N; Li B Bioresour Technol; 2014 Apr; 157():52-9. PubMed ID: 24531147 [TBL] [Abstract][Full Text] [Related]
27. Phosphorus release and recovery from Fe-enhanced primary sedimentation sludge via alkaline fermentation. Chen Y; Lin H; Shen N; Yan W; Wang J; Wang G Bioresour Technol; 2019 Apr; 278():266-271. PubMed ID: 30708329 [TBL] [Abstract][Full Text] [Related]
28. Hydrogen production and microbial diversity in sewage sludge fermentation preceded by heat and alkaline treatment. Kang JH; Kim D; Lee TJ Bioresour Technol; 2012 Apr; 109():239-43. PubMed ID: 22306077 [TBL] [Abstract][Full Text] [Related]
29. Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems. Yuan Y; Wang S; Liu Y; Li B; Wang B; Peng Y Bioresour Technol; 2015 Dec; 197():56-63. PubMed ID: 26318922 [TBL] [Abstract][Full Text] [Related]
30. Reconsideration of anaerobic fermentation from excess sludge at pH 10.0 as an eco-friendly process. Yu GH; He PJ; Shao LM J Hazard Mater; 2010 Mar; 175(1-3):510-7. PubMed ID: 19896767 [TBL] [Abstract][Full Text] [Related]
31. Enhanced production of short-chain fatty acids from waste activated sludge by addition of magnetite under suitable alkaline condition. Lu D; Xing B; Liu Y; Wang Z; Xu X; Zhu L Bioresour Technol; 2019 Oct; 289():121713. PubMed ID: 31276993 [TBL] [Abstract][Full Text] [Related]
32. A biologically inspired variable-pH strategy for enhancing short-chain fatty acids (SCFAs) accumulation in maize straw fermentation. Meng Y; Mumme J; Xu H; Wang K Bioresour Technol; 2016 Feb; 201():329-36. PubMed ID: 26687493 [TBL] [Abstract][Full Text] [Related]
33. Dewaterability of sludge conditioned with surfactant DDBAC pretreatment by acid/alkali. Hong C; Xing Y; Hua X; Si Y; Qiao G; Wang Z Appl Microbiol Biotechnol; 2015 Jul; 99(14):6103-11. PubMed ID: 25744646 [TBL] [Abstract][Full Text] [Related]
34. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant. Jiang S; Chen Y; Zhou Q; Gu G Water Res; 2007 Jul; 41(14):3112-20. PubMed ID: 17499838 [TBL] [Abstract][Full Text] [Related]
35. Elutriated acid fermentation of municipal primary sludge. Ahn YH; Speece RE Water Res; 2006 Jun; 40(11):2210-20. PubMed ID: 16678879 [TBL] [Abstract][Full Text] [Related]
36. On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Petzet S; Peplinski B; Cornel P Water Res; 2012 Aug; 46(12):3769-80. PubMed ID: 22579406 [TBL] [Abstract][Full Text] [Related]
37. Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process. Jiang Y; Chen Y; Zheng X Environ Sci Technol; 2009 Oct; 43(20):7734-41. PubMed ID: 19921887 [TBL] [Abstract][Full Text] [Related]
38. [Acetate accumulation and shift of bacterial community during anaerobic sewage sludge fermentation by pH adjustment]. Liu H; Liu X; Zhang J; Chen J Wei Sheng Wu Xue Bao; 2009 Dec; 49(12):1643-9. PubMed ID: 20222451 [TBL] [Abstract][Full Text] [Related]
39. Alkaline fermentation of waste sludge causes a significant reduction of antibiotic resistance genes in anaerobic reactors. Huang H; Zheng X; Chen Y; Liu H; Wan R; Su Y Sci Total Environ; 2017 Feb; 580():380-387. PubMed ID: 28011019 [TBL] [Abstract][Full Text] [Related]
40. The effects of temperature, pH, and ammonia concentration on the inactivation of Ascaris eggs in sewage sludge. Pecson BM; Barrios JA; Jiménez BE; Nelson KL Water Res; 2007 Jul; 41(13):2893-902. PubMed ID: 17524448 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]