These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25463846)

  • 1. Effect of surfactant amendment to PAHs-contaminated soil for phytoremediation by maize (Zea mays L.).
    Liao C; Liang X; Lu G; Thai T; Xu W; Dang Z
    Ecotoxicol Environ Saf; 2015 Feb; 112():1-6. PubMed ID: 25463846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytotoxicity assay of crop plants to phenanthrene and pyrene contaminants in acidic soil.
    Chouychai W; Thongkukiatkul A; Upatham S; Lee H; Pokethitiyook P; Kruatrachue M
    Environ Toxicol; 2007 Dec; 22(6):597-604. PubMed ID: 18000845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation.
    Xu SY; Chen YX; Wu WX; Wang KX; Lin Q; Liang XQ
    Sci Total Environ; 2006 Jun; 363(1-3):206-15. PubMed ID: 15985280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on
    Wolf DC; Gan J
    Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenanthrene and pyrene uptake by arbuscular mycorrhizal maize and their dissipation in soil.
    Wu FY; Yu XZ; Wu SC; Lin XG; Wong MH
    J Hazard Mater; 2011 Mar; 187(1-3):341-7. PubMed ID: 21282002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mechanisms of the removal and remediation of phenanthrene and pyrene in soil by Pogonatherum paniceum].
    Pan SW; Wei SQ; Yuan X; Cao SX
    Huan Jing Ke Xue; 2009 May; 30(5):1273-9. PubMed ID: 19558089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil bacterial community dynamics following surfactant addition and bioaugmentation in pyrene-contaminated soils.
    Wolf DC; Cryder Z; Gan J
    Chemosphere; 2019 Sep; 231():93-102. PubMed ID: 31128356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microplastics reduced bioavailability and altered toxicity of phenanthrene to maize (Zea mays L.) through modulating rhizosphere microbial community and maize growth.
    Chen X; Zheng X; Fu W; Liu A; Wang W; Wang G; Ji J; Guan C
    Chemosphere; 2023 Dec; 345():140444. PubMed ID: 37839745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of microplastics in the process of laccase-assisted phytoremediation of phenanthrene-contaminated soil.
    Chen X; Zhu Y; Chen F; Li Z; Zhang X; Wang G; Ji J; Guan C
    Sci Total Environ; 2023 Dec; 905():167305. PubMed ID: 37742959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of plant photosystems in the remediation of benzo[a]pyrene and pyrene spiked soils.
    Sivaram AK; Logeshwaran P; Lockington R; Naidu R; Megharaj M
    Chemosphere; 2018 Feb; 193():625-634. PubMed ID: 29175394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant.
    Song S; Zhu L; Zhou W
    Environ Pollut; 2008 Dec; 156(3):1368-70. PubMed ID: 18656292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on microorganism of phenanthrene and pyrene contaminated soils.
    Li W; Li WB; Xing LJ; Guo SX
    Int J Phytoremediation; 2023; 25(2):240-251. PubMed ID: 35549569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: implication of maize cultivar selection for minimal risk to human health and for phytoremediation.
    Wang A; Wang M; Liao Q; He X
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5410-9. PubMed ID: 26564197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation.
    Hong Y; Liao D; Chen J; Khan S; Su J; Li H
    Environ Sci Pollut Res Int; 2015 May; 22(9):7071-81. PubMed ID: 25501539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum.
    Cheng KY; Lai KM; Wong JW
    Chemosphere; 2008 Oct; 73(5):791-7. PubMed ID: 18672265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake and accumulation of phenanthrene and pyrene in spiked soils by Ryegrass (Lolium perenne L.).
    Xu SY; Chen YX; Lin Q; Wu WX; Xue SG; Shen CF
    J Environ Sci (China); 2005; 17(5):817-22. PubMed ID: 16313010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation for phenanthrene and pyrene contaminated soils.
    Gao YZ; Zhu LZ
    J Environ Sci (China); 2005; 17(1):14-8. PubMed ID: 15900750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced dissipation of phenanthrene in spiked soil by arbuscular mycorrhizal alfalfa combined with a non-ionic surfactant amendment.
    Wu N; Zhang S; Huang H; Christie P
    Sci Total Environ; 2008 May; 394(2-3):230-6. PubMed ID: 18313725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review.
    Rizwan M; Ali S; Qayyum MF; Ok YS; Zia-Ur-Rehman M; Abbas Z; Hannan F
    Environ Geochem Health; 2017 Apr; 39(2):259-277. PubMed ID: 27061410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.