BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25463860)

  • 1. Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect.
    Kapusta K; Stańczyk K
    Ecotoxicol Environ Saf; 2015 Feb; 112():105-13. PubMed ID: 25463860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructed wetland as a green remediation technology for the treatment of wastewater from underground coal gasification process.
    Jałowiecki Ł; Strugała-Wilczek A; Ponikiewska K; Borgulat J; Płaza G; Stańczyk K
    PLoS One; 2024; 19(3):e0300485. PubMed ID: 38470886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the chemical, microbiological and toxicological aspects of post-processing water from underground coal gasification.
    Pankiewicz-Sperka M; Stańczyk K; Płaza GA; Kwaśniewska J; Nałęcz-Jawecki G
    Ecotoxicol Environ Saf; 2014 Oct; 108():294-301. PubMed ID: 25108176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemometric Study of the Ex Situ Underground Coal Gasification Wastewater Experimental Data.
    Smoliński A; Stańczyk K; Kapusta K; Howaniec N
    Water Air Soil Pollut; 2012 Nov; 223(9):5745-5758. PubMed ID: 23136453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the organic contaminants in the condensate produced in the in situ underground coal gasification process.
    Smoliński A; Stańczyk K; Kapusta K; Howaniec N
    Water Sci Technol; 2013; 67(3):644-50. PubMed ID: 23202571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ranking of ecotoxisity tests for underground water assessment using the Hasse diagram technique.
    Kudłak B; Tsakovski S; Simeonov V; Sagajdakow A; Wolska L; Namieśnik J
    Chemosphere; 2014 Jan; 95():17-23. PubMed ID: 23810519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of inorganic constitutions of condensate and solid residue generated from small-scale ex situ experiments in the context of underground coal gasification.
    Sadasivam S; Zagorščak R; Thomas HR; Kapusta K; Stańczyk K
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):2203-2213. PubMed ID: 34365600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the migration of organic contaminants in laboratory-scale groundwater polluted by underground coal gasification.
    Wang F; Chen L; Xu B; Ma J; Xing B; Su F; Shi C
    Environ Sci Pollut Res Int; 2024 May; 31(23):34446-34458. PubMed ID: 38703318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity evaluation of pharmaceutical wastewaters using the alga Scenedesmus obliquus and the bacterium Vibrio fischeri.
    Yu X; Zuo J; Tang X; Li R; Li Z; Zhang F
    J Hazard Mater; 2014 Feb; 266():68-74. PubMed ID: 24374566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the acute toxicity of triclosan and methyl triclosan in wastewater based on the bioluminescence inhibition of Vibrio fischeri.
    Farré M; Asperger D; Kantiani L; González S; Petrovic M; Barceló D
    Anal Bioanal Chem; 2008 Apr; 390(8):1999-2007. PubMed ID: 18172620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity of waste gasification bottom ash leachate.
    Sivula L; Oikari A; Rintala J
    Waste Manag; 2012 Jun; 32(6):1171-8. PubMed ID: 22285871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ sorption phenomena can mitigate potential negative environmental effects of underground coal gasification (UCG) - an experimental study of phenol removal on UCG-derived residues in the aspect of contaminant retardation.
    Strugała-Wilczek A; Basa W; Kapusta K; Soukup K
    Ecotoxicol Environ Saf; 2021 Jan; 208():111710. PubMed ID: 33396041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity cutoff of aromatic hydrocarbons for luminescence inhibition of Vibrio fischeri.
    Lee SY; Kang HJ; Kwon JH
    Ecotoxicol Environ Saf; 2013 Aug; 94():116-22. PubMed ID: 23731864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on the Pollutant Migration Law Based on Large-Scale Three-Dimensional Similar Simulation Experiments of Underground Coal Gasification.
    Xin L; Li K; Feng M; Cheng W; Wang Z; Li J; Wu J
    ACS Omega; 2022 May; 7(18):15982-15995. PubMed ID: 35571821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity and chemical analyses of airport runoff waters in Poland.
    Sulej AM; Polkowska Z; Wolska L; Cieszynska M; Namieśnik J
    Environ Sci Process Impacts; 2014 May; 16(5):1083-93. PubMed ID: 24668023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological study on the toxicity of ionic liquids on Vibrio fischeri by the quantitative structure-activity relationship method.
    Yan F; Shang Q; Xia S; Wang Q; Ma P
    J Hazard Mater; 2015 Apr; 286():410-5. PubMed ID: 25603290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental hazard assessment of coal fly ashes using leaching and ecotoxicity tests.
    Tsiridis V; Petala M; Samaras P; Kungolos A; Sakellaropoulos GP
    Ecotoxicol Environ Saf; 2012 Oct; 84():212-20. PubMed ID: 22858104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and ecotoxicological assessment of polycyclic aromatic hydrocarbon--contaminated sediments of the Niger Delta, Southern Nigeria.
    Olajire AA; Altenburger R; Küster E; Brack W
    Sci Total Environ; 2005 Mar; 340(1-3):123-36. PubMed ID: 15752497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing chemical toxicity of ionic liquids on Vibrio fischeri: Correlation with structure and composition.
    Montalbán MG; Hidalgo JM; Collado-González M; Díaz Baños FG; Víllora G
    Chemosphere; 2016 Jul; 155():405-414. PubMed ID: 27139120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The luminescent bacteria test to determine the acute toxicity of nanoparticle suspensions.
    Garcia A; Recillas S; Sánchez A; Font X
    Methods Mol Biol; 2012; 926():255-9. PubMed ID: 22975970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.