BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25464030)

  • 1. Combining motion analysis and microfluidics--a novel approach for detecting whole-animal responses to test substances.
    Rudin-Bitterli TS; Tills O; Spicer JI; Culverhouse PF; Wielhouwer EM; Richardson MK; Rundle SD
    PLoS One; 2014; 9(12):e113235. PubMed ID: 25464030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel application of motion analysis for detecting stress responses in embryos at different stages of development.
    Tills O; Bitterli T; Culverhouse P; Spicer JI; Rundle S
    BMC Bioinformatics; 2013 Feb; 14():37. PubMed ID: 23374982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fully Automated High-Throughput Zebrafish Behavioral Ototoxicity Assay.
    Todd DW; Philip RC; Niihori M; Ringle RA; Coyle KR; Zehri SF; Zabala L; Mudery JA; Francis RH; Rodriguez JJ; Jacob A
    Zebrafish; 2017 Aug; 14(4):331-342. PubMed ID: 28520533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing zebrafish chemical screens.
    Peterson RT; Fishman MC
    Methods Cell Biol; 2011; 105():525-41. PubMed ID: 21951546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral profiling of zebrafish embryos exposed to a panel of 60 water-soluble compounds.
    Ali S; Champagne DL; Richardson MK
    Behav Brain Res; 2012 Mar; 228(2):272-83. PubMed ID: 22138507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zebrafish embryos and larvae: a new generation of disease models and drug screens.
    Ali S; Champagne DL; Spaink HP; Richardson MK
    Birth Defects Res C Embryo Today; 2011 Jun; 93(2):115-33. PubMed ID: 21671352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zebrafish embryo development in a microfluidic flow-through system.
    Wielhouwer EM; Ali S; Al-Afandi A; Blom MT; Riekerink MB; Poelma C; Westerweel J; Oonk J; Vrouwe EX; Buesink W; vanMil HG; Chicken J; van't Oever R; Richardson MK
    Lab Chip; 2011 May; 11(10):1815-24. PubMed ID: 21491052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain- and context-dependent behavioural responses of acute alarm substance exposure in zebrafish.
    Quadros VA; Silveira A; Giuliani GS; Didonet F; Silveira AS; Nunes ME; Silva TO; Loro VL; Rosemberg DB
    Behav Processes; 2016 Jan; 122():1-11. PubMed ID: 26524408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical screening in zebrafish for novel biological and therapeutic discovery.
    Tan JL; Zon LI
    Methods Cell Biol; 2011; 105():493-516. PubMed ID: 21951544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic devices for embryonic and larval zebrafish studies.
    Khalili A; Rezai P
    Brief Funct Genomics; 2019 Nov; 18(6):419-432. PubMed ID: 31034029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zebrafish models for assessing developmental and reproductive toxicity.
    He JH; Gao JM; Huang CJ; Li CQ
    Neurotoxicol Teratol; 2014; 42():35-42. PubMed ID: 24503215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-throughput analysis method to detect regions of interest and quantify zebrafish embryo images.
    Xu X; Xu X; Huang X; Xia W; Xia S
    J Biomol Screen; 2010 Oct; 15(9):1152-9. PubMed ID: 20930217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in zebrafish chemical screening technologies.
    Mathias JR; Saxena MT; Mumm JS
    Future Med Chem; 2012 Sep; 4(14):1811-22. PubMed ID: 23043478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidics expands the zebrafish potentials in pharmaceutically relevant screening.
    Chen CY; Cheng CM
    Adv Healthc Mater; 2014 Jun; 3(6):940-5. PubMed ID: 24459083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo zebrafish assays for analyzing drug toxicity.
    Raldúa D; Piña B
    Expert Opin Drug Metab Toxicol; 2014 May; 10(5):685-97. PubMed ID: 24617455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A panel of biological tests reveals developmental effects of pharmaceutical pollutants on late stage zebrafish embryos.
    Pruvot B; Quiroz Y; Voncken A; Jeanray N; Piot A; Martial JA; Muller M
    Reprod Toxicol; 2012 Dec; 34(4):568-83. PubMed ID: 22982570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small molecule screening in the zebrafish.
    Murphey RD; Zon LI
    Methods; 2006 Jul; 39(3):255-61. PubMed ID: 16877005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-phenotypic and bi-directional behavioral screening of zebrafish larvae.
    Khalili A; van Wijngaarden E; Zoidl GR; Rezai P
    Integr Biol (Camb); 2020 Sep; 12(8):211-220. PubMed ID: 32877926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technologies for micromanipulating, imaging, and phenotyping small invertebrates and vertebrates.
    Yanik MF; Rohde CB; Pardo-Martin C
    Annu Rev Biomed Eng; 2011 Aug; 13():185-217. PubMed ID: 21756142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated quantification of zebrafish somites based on PDE method.
    Lu J; Wu T; Liu T; Chen C; Zhao C; Yang J
    J Microsc; 2012 Nov; 248(2):156-62. PubMed ID: 22957990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.