BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25464074)

  • 1. Facile enzymatic synthesis of sugar 1-phosphates as substrates for phosphorylases using anomeric kinases.
    Liu Y; Nishimoto M; Kitaoka M
    Carbohydr Res; 2015 Jan; 401():1-4. PubMed ID: 25464074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diastereoselective Synthesis of Glycosyl Phosphates by Using a Phosphorylase-Phosphatase Combination Catalyst.
    Wildberger P; Pfeiffer M; Brecker L; Nidetzky B
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15867-71. PubMed ID: 26565075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the phosphorylase reaction. Utilization of D-gluco-hept-1-enitol in the absence of primer.
    Klein HW; Im MJ; Palm D
    Eur J Biochem; 1986 May; 157(1):107-14. PubMed ID: 3086089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic α-glucuronylation of maltooligosaccharides using α-glucuronic acid 1-phosphate as glycosyl donor catalyzed by a thermostable phosphorylase from Aquifex aeolicus VF5.
    Umegatani Y; Izawa H; Nawaji M; Yamamoto K; Kubo A; Yanase M; Takaha T; Kadokawa J
    Carbohydr Res; 2012 Mar; 350():81-5. PubMed ID: 22265379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic synthesis using glycoside phosphorylases.
    O'Neill EC; Field RA
    Carbohydr Res; 2015 Feb; 403():23-37. PubMed ID: 25060838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoenolpyruvate as a dual purpose reagent for integrated nucleotide/nicotinamide cofactor recycling.
    Fessner WD; Sinerius G
    Bioorg Med Chem; 1994 Jul; 2(7):639-45. PubMed ID: 7858970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereospecific synthesis of sugar-1-phosphates and their conversion to sugar nucleotides.
    Timmons SC; Jakeman DL
    Carbohydr Res; 2008 Apr; 343(5):865-74. PubMed ID: 18299123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A short synthesis of D-glycero-D-manno-heptose 7-phosphate.
    Güzlek H; Graziani A; Kosma P
    Carbohydr Res; 2005 Dec; 340(18):2808-11. PubMed ID: 16263101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further syntheses employing phosphorylase.
    Evers B; Thiem J
    Bioorg Med Chem; 1997 May; 5(5):857-63. PubMed ID: 9208097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A practical method for the stereoselective generation of beta-2-deoxy glycosyl phosphates.
    Oberthür M; Leimkuhler C; Kahne D
    Org Lett; 2004 Aug; 6(17):2873-6. PubMed ID: 15330636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of a centrogenic fever on phosphorylase and pyruvate kinase activity in rabbit tissues].
    Daudova GM; Soliternova IB; Shvets MA
    Vopr Med Khim; 1977; 23(5):704-9. PubMed ID: 595505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel synthesis of D-galactofuranosyl, D-glucofuranosyl and D-mannofuranosyl 1-phosphates based on remote activation of new and free hexofuranosyl donors.
    Ferrières V; Blanchard S; Fischer D; Plusquellec D
    Bioorg Med Chem Lett; 2002 Dec; 12(24):3515-8. PubMed ID: 12443765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring specificity of glycosyltransferases: synthesis of new sugar nucleotide related molecules as putative donor substrates.
    Khaled A; Piotrowska O; Dominiak K; Augé C
    Carbohydr Res; 2008 Feb; 343(2):167-78. PubMed ID: 18048019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unusually broad substrate tolerance of a heat-stable archaeal sugar nucleotidyltransferase for the synthesis of sugar nucleotides.
    Mizanur RM; Zea CJ; Pohl NL
    J Am Chem Soc; 2004 Dec; 126(49):15993-8. PubMed ID: 15584733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Di-tert-butyl diethylphosphoramidite as the phosphitylating reagent in the preparation of 3-deoxy-3-C-methylene-D-ribo-hexose-6-phosphate and 3-deoxy-3-C-methylene-D-erythro-pentose-5-phosphate.
    Burger A; Tritsch D; Biellmann JF
    Carbohydr Res; 2001 May; 332(2):141-9. PubMed ID: 11434371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The binding of 2-deoxy-D-glucose 6-phosphate to glycogen phosphorylase b: kinetic and crystallographic studies.
    Oikonomakos NG; Zographos SE; Johnson LN; Papageorgiou AC; Acharya KR
    J Mol Biol; 1995 Dec; 254(5):900-17. PubMed ID: 7500360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of α(1→4)-linked non-natural mannoglucans by α-glucan phosphorylase-catalyzed enzymatic copolymerization.
    Baba R; Yamamoto K; Kadokawa JI
    Carbohydr Polym; 2016 Oct; 151():1034-1039. PubMed ID: 27474652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of pyridoxal 5'-phosphate and orthophosphate in general acid-base catalysis by alpha-glucan phosphorylases.
    Klein HW; Im MJ; Helmreich EJ
    Prog Clin Biol Res; 1984; 144A():147-60. PubMed ID: 6728843
    [No Abstract]   [Full Text] [Related]  

  • 19. Selective inhibition of metabolic enzymes by enzymatically synthesized D-glucal-6-phosphate.
    Chenault HK; Mandes RF
    Bioorg Med Chem; 1994 Jul; 2(7):627-9. PubMed ID: 7858968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of 2-deoxy-alpha-D-arabino-hexopyranosyl phosphate and 2-deoxy-maltooligosaccharides with phosphorylase.
    Evers B; Mischnick P; Thiem J
    Carbohydr Res; 1994 Sep; 262(2):335-41. PubMed ID: 7982224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.