These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25464077)

  • 1. Supercritical water treatment for cello-oligosaccharide production from microcrystalline cellulose.
    Tolonen LK; Juvonen M; Niemelä K; Mikkelson A; Tenkanen M; Sixta H
    Carbohydr Res; 2015 Jan; 401():16-23. PubMed ID: 25464077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases.
    Westereng B; Agger JW; Horn SJ; Vaaje-Kolstad G; Aachmann FL; Stenstrøm YH; Eijsink VG
    J Chromatogr A; 2013 Jan; 1271(1):144-52. PubMed ID: 23246088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolution and recovery of cellulose from 1-butyl-3-methylimidazolium chloride in presence of water.
    Iguchi M; Aida TM; Watanabe M; Smith RL
    Carbohydr Polym; 2013 Jan; 92(1):651-8. PubMed ID: 23218349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Governing chemistry of cellulose hydrolysis in supercritical water.
    Cantero DA; Bermejo MD; Cocero MJ
    ChemSusChem; 2015 Mar; 8(6):1026-33. PubMed ID: 25704124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentable hexose production from corn stalks and wheat straw with combined supercritical and subcritical hydrothermal technology.
    Zhao Y; Lu WJ; Wang HT; Yang JL
    Bioresour Technol; 2009 Dec; 100(23):5884-9. PubMed ID: 19616938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides.
    Meine N; Rinaldi R; Schüth F
    ChemSusChem; 2012 Aug; 5(8):1449-54. PubMed ID: 22488972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solubility of cellulose in supercritical water studied by molecular dynamics simulations.
    Tolonen LK; Bergenstråhle-Wohlert M; Sixta H; Wohlert J
    J Phys Chem B; 2015 Apr; 119(13):4739-48. PubMed ID: 25756596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of cellulose II from native cellulose by near- and supercritical water solubilization.
    Sasaki M; Adschiri T; Arai K
    J Agric Food Chem; 2003 Aug; 51(18):5376-81. PubMed ID: 12926886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimally invasive monitoring of cellulose degradation by desorption electrospray ionization and laser ablation electrospray ionization mass spectrometry.
    Stephens CH; Shrestha B; Morris HR; Bier ME; Whitmore PM; Vertes A
    Analyst; 2010 Sep; 135(9):2434-44. PubMed ID: 20672159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the degree of polymerization on the binding of xyloglucans to cellulose.
    Hayashi T; Takeda T; Ogawa K; Mitsuishi Y
    Plant Cell Physiol; 1994 Sep; 35(6):893-9. PubMed ID: 7981962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous analysis of C1 and C4 oxidized oligosaccharides, the products of lytic polysaccharide monooxygenases acting on cellulose.
    Westereng B; Arntzen MØ; Aachmann FL; Várnai A; Eijsink VG; Agger JW
    J Chromatogr A; 2016 May; 1445():46-54. PubMed ID: 27059395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol-Water Solutions.
    Yang L; Yang X; Tian E; Lin H
    ChemSusChem; 2016 Jan; 9(1):36-41. PubMed ID: 26685114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to insoluble glucose oligomers in decomposed cellulose.
    Sumi T; Sakaki T; Ohba H; Shibata M
    Rapid Commun Mass Spectrom; 2000; 14(19):1823-7. PubMed ID: 11006591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of highly ordered cellulose II in vitro using cellodextrin phosphorylase.
    Hiraishi M; Igarashi K; Kimura S; Wada M; Kitaoka M; Samejima M
    Carbohydr Res; 2009 Dec; 344(18):2468-73. PubMed ID: 19879558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum.
    Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B
    Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced enzymatic hydrolysis of pretreated almond-tree prunings for sugar production.
    Cuevas M; García JF; Sánchez S
    Carbohydr Polym; 2014 Jan; 99():791-9. PubMed ID: 24274571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of supercritical phase and combined supercritical/subcritical conversion of lignocellulose for hexose production by using a flow reaction system.
    Zhao Y; Lu WJ; Wu HY; Liu JW; Wang HT
    Bioresour Technol; 2012 Dec; 126():391-6. PubMed ID: 22459955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of cellulase reaction on pure cellulosic substrates.
    Gupta R; Lee YY
    Biotechnol Bioeng; 2009 Apr; 102(6):1570-81. PubMed ID: 19061239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of ethyl cellulose/methyl cellulose blends by supercritical antisolvent precipitation.
    Duarte AR; Gordillo MD; Cardoso MM; Simplício AL; Duarte CM
    Int J Pharm; 2006 Mar; 311(1-2):50-4. PubMed ID: 16423476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soluble Cello-Oligosaccharides Produced by Carbon-Catalyzed Hydrolysis of Cellulose.
    Chen P; Shrotri A; Fukuoka A
    ChemSusChem; 2019 Jun; 12(12):2576-2580. PubMed ID: 31020806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.