BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25464303)

  • 1. Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: a novel approach to the bioremediation of arsenic-polluted groundwater.
    Pous N; Casentini B; Rossetti S; Fazi S; Puig S; Aulenta F
    J Hazard Mater; 2015; 283():617-22. PubMed ID: 25464303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial arsenite oxidation with oxygen, nitrate, or an electrode as the sole electron acceptor.
    Nguyen VK; Tran HT; Park Y; Yu J; Lee T
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):857-868. PubMed ID: 28185099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous arsenite oxidation and nitrate reduction at the electrodes of bioelectrochemical systems.
    Nguyen VK; Park Y; Yu J; Lee T
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19978-88. PubMed ID: 27438874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic biotransformation potential of microbial arsH responses in the biogeochemical cycling of arsenic-contaminated groundwater.
    Chang JS; Yoon IH; Kim KW
    Chemosphere; 2018 Jan; 191():729-737. PubMed ID: 29080535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-bioremediation of nitrate and arsenite polluted groundwater.
    Ceballos-Escalera A; Pous N; Chiluiza-Ramos P; Korth B; Harnisch F; Bañeras L; Balaguer MD; Puig S
    Water Res; 2021 Feb; 190():116748. PubMed ID: 33360100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation.
    Zhang P; Tong M; Yuan S; Liao P
    J Contam Hydrol; 2014 Aug; 164():299-307. PubMed ID: 25041731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of arsenic from groundwater by arsenite-oxidizing bacteria.
    Ike M; Miyazaki T; Yamamoto N; Sei K; Soda S
    Water Sci Technol; 2008; 58(5):1095-100. PubMed ID: 18824809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.
    Fazi S; Crognale S; Casentini B; Amalfitano S; Lotti F; Rossetti S
    Microb Ecol; 2016 Jul; 72(1):25-35. PubMed ID: 27090902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of arsenite-oxidizing bacteria isolated from arsenic-contaminated groundwater of West Bengal.
    Paul D; Poddar S; Sar P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(13):1481-92. PubMed ID: 25137536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments.
    Sun W; Sierra-Alvarez R; Milner L; Oremland R; Field JA
    Environ Sci Technol; 2009 Sep; 43(17):6585-91. PubMed ID: 19764221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depth-resolved abundance and diversity of arsenite-oxidizing bacteria in the groundwater of Beimen, a blackfoot disease endemic area of southwestern Taiwan.
    Das S; Kar S; Jean JS; Rathod J; Chakraborty S; Liu HS; Bundschuh J
    Water Res; 2013 Dec; 47(19):6983-91. PubMed ID: 24169515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium.
    Kao AC; Chu YJ; Hsu FL; Liao VH
    J Contam Hydrol; 2013 Dec; 155():1-8. PubMed ID: 24096199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenite removal from groundwater by aerated electrocoagulation reactor with Al ball electrodes: Human health risk assessment.
    Goren AY; Kobya M; Oncel MS
    Chemosphere; 2020 Jul; 251():126363. PubMed ID: 32151809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible bacterial strains that oxidize arsenite in anoxic or aerobic conditions and utilize hydrogen or acetate as alternative electron donors.
    Rodríguez-Freire L; Sun W; Sierra-Alvarez R; Field JA
    Biodegradation; 2012 Feb; 23(1):133-43. PubMed ID: 21706372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rethinking anaerobic As(III) oxidation in filters: Effect of indigenous nitrate respirers.
    Cui J; Du J; Tian H; Chan T; Jing C
    Chemosphere; 2018 Apr; 196():223-230. PubMed ID: 29304460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Arsenic and Iron on the Community and Abundance of Arsenite-Oxidizing Bacteria in an Arsenic-Affected Groundwater Aquifer.
    Pipattanajaroenkul P; Chotpantarat S; Termsaithong T; Sonthiphand P
    Curr Microbiol; 2021 Apr; 78(4):1324-1334. PubMed ID: 33638670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical stimulation of microbial cis-dichloroethene (cis-DCE) oxidation by an ethene-assimilating culture.
    Aulenta F; Verdini R; Zeppilli M; Zanaroli G; Fava F; Rossetti S; Majone M
    N Biotechnol; 2013 Sep; 30(6):749-55. PubMed ID: 23624307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical removal and recovery of iron from groundwater using non-corrosive electrodes.
    Nguyen VK; Ahn Y
    J Environ Manage; 2018 Apr; 211():36-41. PubMed ID: 29427929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term performance of rapid oxidation of arsenite in simulated groundwater using a population of arsenite-oxidizing microorganisms in a bioreactor.
    Li H; Zeng XC; He Z; Chen X; E G; Han Y; Wang Y
    Water Res; 2016 Sep; 101():393-401. PubMed ID: 27288673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic speciation, the abundance of arsenite-oxidizing bacteria and microbial community structures in groundwater, surface water, and soil from a gold mine.
    Sonthiphand P; Kraidech S; Polart S; Chotpantarat S; Kusonmano K; Uthaipaisanwong P; Rangsiwutisak C; Luepromchai E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(7):769-785. PubMed ID: 34038319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.