These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25464324)

  • 1. Impact of polyacrylamide with different contents of carboxyl groups on the chromium (III) oxide adsorption properties in aqueous solution.
    Wiśniewska M; Chibowski S; Urban T
    J Hazard Mater; 2015; 283():815-23. PubMed ID: 25464324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of anionic polyacrylamide adsorption on the montmorillonite surface in the presence of Cr(VI) ions.
    Wiśniewska M; Fijałkowska G; Szewczuk-Karpisz K
    Chemosphere; 2018 Nov; 211():524-534. PubMed ID: 30086529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations of chromium(III) oxide removal from the aqueous suspension using the mixed flocculant composed of anionic and cationic polyacrylamides.
    Wiśniewska M; Chibowski S; Urban T; Terpiłowski K
    J Hazard Mater; 2019 Apr; 368():378-385. PubMed ID: 30690390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of anionic polyacrylamide on stability and surface properties of the Al
    Wiśniewska M; Chibowski S; Urban T; Sternik D; Terpiłowski K
    Colloid Polym Sci; 2016; 294():1511-1517. PubMed ID: 27546950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal possibilities of colloidal chromium (III) oxide from water using polyacrylic acid.
    Wiśniewska M; Szewczuk-Karpisz K
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):3657-69. PubMed ID: 23128988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the colloidal Cr2O3 removal possibilities from aqueous solution using the ionic polyamino acid block copolymers.
    Ostolska I; Wiśniewska M
    J Hazard Mater; 2015 Jun; 290():69-77. PubMed ID: 25746566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the zeta potential measurements to explanation of colloidal Cr
    Ostolska I; Wiśniewska M
    Colloid Polym Sci; 2014; 292(10):2453-2464. PubMed ID: 25242857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anionic polyacrylamide influence on the lead(II) ion accumulation in soil - the study on montmorillonite.
    Fijałkowska G; Szewczuk-Karpisz K; Wiśniewska M
    J Environ Health Sci Eng; 2020 Dec; 18(2):599-607. PubMed ID: 33312586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorptive removal of As(III) ions from water using spent grain modified by polyacrylamide.
    Chen Y; Xiong C
    J Environ Sci (China); 2016 Jul; 45():124-30. PubMed ID: 27372126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of bilayers and multilayers of cationic and anionic co-polymers of acrylamide on silicon oxide.
    Wågberg L; Pettersson G; Notley S
    J Colloid Interface Sci; 2004 Jun; 274(2):480-8. PubMed ID: 15144820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of anionic dyes on to waste Fe (III)/Cr (III).
    Namasivayam C; Sumithra S
    J Environ Sci Eng; 2006 Jan; 48(1):69-74. PubMed ID: 17913206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the SAXS method and viscometry for determination of the thickness of adsorbed polymer layers at the ZrO2-polymer solution interface.
    Chibowski S; Wiśniewska M; Marczewski AW; Pikus S
    J Colloid Interface Sci; 2003 Nov; 267(1):1-8. PubMed ID: 14554160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hay-based activated biochars obtained using two different heating methods as effective low-cost sorbents: Solid surface characteristics, adsorptive properties and aggregation in the mixed Cu(II)/PAM system.
    Szewczuk-Karpisz K; Nowicki P; Sokołowska Z; Pietrzak R
    Chemosphere; 2020 Jul; 250():126312. PubMed ID: 32120152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of chromium ions from [corrected] aqueous solutions by adsorption on activated carbon and char.
    Di Natale F; Lancia A; Molino A; Musmarra D
    J Hazard Mater; 2007 Jul; 145(3):381-90. PubMed ID: 17169486
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Szewczuk-Karpisz K; Wiśniewska M; Pac M; Choma A; Komaniecka I
    Water Air Soil Pollut; 2014; 225(8):2052. PubMed ID: 25132693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling Fe(III)/Cr(III) hydroxide, an industrial solid waste for the removal of phosphate from water.
    Namasivayam C; Prathap K
    J Hazard Mater; 2005 Aug; 123(1-3):127-34. PubMed ID: 15955623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms.
    Deng S; Bai R
    Water Res; 2004 May; 38(9):2423-31. PubMed ID: 15142804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions.
    Sheha RR; El-Zahhar AA
    J Hazard Mater; 2008 Feb; 150(3):795-803. PubMed ID: 17630189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of sodium polyacrylate adsorbed on TiO2 with cationic and anionic surfactants.
    Li H; Tripp CP
    Langmuir; 2004 Nov; 20(24):10526-33. PubMed ID: 15544381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters.
    Önnby L; Pakade V; Mattiasson B; Kirsebom H
    Water Res; 2012 Sep; 46(13):4111-20. PubMed ID: 22687522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.