These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25464344)

  • 1. Filtering multifocal VEP signals using Prony's method.
    Fernández A; de Santiago L; Blanco R; Pérez-Rico C; Rodríguez-Ascariz JM; Barea R; Miguel-Jiménez JM; García-Luque JR; Ortiz del Castillo M; Sánchez-Morla EM; Boquete L
    Comput Biol Med; 2015 Jan; 56():13-9. PubMed ID: 25464344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coding Prony's method in MATLAB and applying it to biomedical signal filtering.
    Fernández Rodríguez A; de Santiago Rodrigo L; López Guillén E; Rodríguez Ascariz JM; Miguel Jiménez JM; Boquete L
    BMC Bioinformatics; 2018 Nov; 19(1):451. PubMed ID: 30477444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filtering mfVEP signals using Wiener filter.
    Ortiz Del Castillo M; de Santiago L; Fernández A; García-Luque JR; Sánchez-Morla EM; Boquete L
    Stud Health Technol Inform; 2014; 207():321-9. PubMed ID: 25488238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical mode decomposition processing to improve multifocal-visual-evoked-potential signal analysis in multiple sclerosis.
    de Santiago L; Sánchez-Morla E; Blanco R; Miguel JM; Amo C; Ortiz Del Castillo M; López A; Boquete L
    PLoS One; 2018; 13(4):e0194964. PubMed ID: 29677200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A signal-to-noise-ratio-based analysis of multifocal visual-evoked potentials in multiple sclerosis risk assessment.
    De Santiago L; Ortiz Del Castillo M; Blanco R; Barea R; Rodríguez-Ascariz JM; Miguel-Jiménez JM; Sánchez-Morla EM; Boquete L
    Clin Neurophysiol; 2016 Feb; 127(2):1574-1580. PubMed ID: 26463474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Software for analysing multifocal visual evoked potential signal latency progression.
    de Santiago L; Klistorner A; Ortiz M; Fernández-Rodríguez AJ; Rodríguez Ascariz JM; Barea R; Miguel-Jiménez JM; Boquete L
    Comput Biol Med; 2015 Apr; 59():134-141. PubMed ID: 25732777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-trial subspace-based approach for VEP extraction.
    Kamel N; Yusoff MZ; Hani AF
    IEEE Trans Biomed Eng; 2011 May; 58(5):1383-93. PubMed ID: 21177154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral composition of heart sounds before and after mechanical heart valve implantation using a modified forward-backward Prony's method.
    Sava HP; McDonnell JT
    IEEE Trans Biomed Eng; 1996 Jul; 43(7):734-42. PubMed ID: 9216145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing electrode positions and analysis strategies for multifocal VEP recordings by ROC analysis.
    Meigen T; Krämer M
    Vision Res; 2007 May; 47(11):1445-54. PubMed ID: 17408716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. K-space Prony's method for generating the basis functions of multi-Gaussian beam models.
    Schmerr LW; Lopez-Sanchez AL; Sedov A
    Ultrasonics; 2010 May; 50(6):600-5. PubMed ID: 20096435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instantaneous VEP signal frequency analysis.
    Shelton D; Longbotham H
    Biomed Sci Instrum; 1993; 29():177-82. PubMed ID: 8329589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancellous bone analysis with modified least squares Prony's method and chirp filter: phantom experiments and simulation.
    Wear KA
    J Acoust Soc Am; 2010 Oct; 128(4):2191-203. PubMed ID: 20968389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual evoked potential enhancement by an artificial neural network filter.
    Fung KS; Chan FH; Lam FK; Liu JG; Poon PW
    Biomed Mater Eng; 1996; 6(1):1-13. PubMed ID: 8727499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparison of methods for reducing residual noise in suprathreshold early auditory evoked potential registration].
    Mühler R; von Specht H; Pethe J
    Laryngorhinootologie; 1998 Jul; 77(7):382-7. PubMed ID: 9743976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normalization of visual evoked potentials using underlying electroencephalogram levels improves amplitude reproducibility in rats.
    You Y; Thie J; Klistorner A; Gupta VK; Graham SL
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1473-8. PubMed ID: 22297498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-adaptive filtering technique for surface somatosensory evoked potentials processing.
    Lam BS; Hu Y; Lu WW; Luk KD; Chang CQ; Qiu W; Chan FH
    Med Eng Phys; 2005 Apr; 27(3):257-66. PubMed ID: 15694610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved processing of the steady-state evoked potential.
    Tang Y; Norcia AM
    Electroencephalogr Clin Neurophysiol; 1993; 88(4):323-34. PubMed ID: 7688287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of fast and slow wave properties in cancellous bone using Prony's method and curve fitting.
    Wear KA
    J Acoust Soc Am; 2013 Apr; 133(4):2490-501. PubMed ID: 23556613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual evoked potential estimation by adaptive noise cancellation with neural-network-based fuzzy inference system.
    Zeng Y; Zhang J; Yin H; Pan Y
    J Med Eng Technol; 2007; 31(3):185-90. PubMed ID: 17454407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaussian wavelet transform and classifier to reliably estimate latency of multifocal visual evoked potentials (mfVEP).
    Thie J; Sriram P; Klistorner A; Graham SL
    Vision Res; 2012 Jan; 52(1):79-87. PubMed ID: 22100835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.