These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 25464345)

  • 1. Computational studies on strain transmission from a collagen gel construct to a cell and its internal cytoskeletal filaments.
    Ujihara Y; Nakamura M; Soga M; Koshiyama K; Miyazaki H; Wada S
    Comput Biol Med; 2015 Jan; 56():20-9. PubMed ID: 25464345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steered molecular dynamics characterization of the elastic modulus and deformation mechanisms of single natural tropocollagen molecules.
    Tang M; Li T; Pickering E; Gandhi NS; Burrage K; Gu Y
    J Mech Behav Biomed Mater; 2018 Oct; 86():359-367. PubMed ID: 30015207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proposed spring network cell model based on a minimum energy concept.
    Ujihara Y; Nakamura M; Miyazaki H; Wada S
    Ann Biomed Eng; 2010 Apr; 38(4):1530-8. PubMed ID: 20108165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cytoskeletal elastic properties on the mechanoelectrical transduction in excitable cells.
    Shklyar TF; Dinislamova OA; Safronov AP; Blyakhman FA
    J Biomech; 2012 May; 45(8):1444-9. PubMed ID: 22402032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules.
    Gautieri A; Buehler MJ; Redaelli A
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):130-7. PubMed ID: 19627816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Young's modulus of collagen at slow displacement rates.
    Lopez-Garcia MD; Beebe DJ; Crone WC
    Biomed Mater Eng; 2010; 20(6):361-9. PubMed ID: 21263182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental and theoretical analysis of unconfined compression of corneal stroma.
    Hatami-Marbini H; Etebu E
    J Biomech; 2013 Jun; 46(10):1752-8. PubMed ID: 23664313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of crosslink torsional stiffness on elastic behavior of semiflexible polymer networks.
    Hatami-Marbini H
    Phys Rev E; 2018 Feb; 97(2-1):022504. PubMed ID: 29548117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-dimensional random network model of the cytoskeleton and its role in mechanotransduction and nucleus deformation.
    Zeng Y; Yip AK; Teo SK; Chiam KH
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):49-59. PubMed ID: 21308391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IL-1beta decreases the elastic modulus of human tenocytes.
    Qi J; Fox AM; Alexopoulos LG; Chi L; Bynum D; Guilak F; Banes AJ
    J Appl Physiol (1985); 2006 Jul; 101(1):189-95. PubMed ID: 16627678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip surface acoustic wave and micropipette aspiration techniques to assess cell elastic properties.
    Wu Y; Cheng T; Chen Q; Gao B; Stewart AG; Lee PVS
    Biomicrofluidics; 2020 Jan; 14(1):014114. PubMed ID: 32095200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: a quantitative analysis.
    Stamenović D; Coughlin MF
    J Theor Biol; 1999 Nov; 201(1):63-74. PubMed ID: 10534436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomechanical characterization of the stiffness of eye lens cells: a pilot study.
    Hozic A; Rico F; Colom A; Buzhynskyy N; Scheuring S
    Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):2151-6. PubMed ID: 22427595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of young's modulus of human tympanic membrane at high strain rates.
    Luo H; Dai C; Gan RZ; Lu H
    J Biomech Eng; 2009 Jun; 131(6):064501. PubMed ID: 19449971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring the quasi-static Young's modulus of the eardrum using an indentation technique.
    Hesabgar SM; Marshall H; Agrawal SK; Samani A; Ladak HM
    Hear Res; 2010 May; 263(1-2):168-76. PubMed ID: 20146934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material modeling of biofilm mechanical properties.
    Laspidou CS; Spyrou LA; Aravas N; Rittmann BE
    Math Biosci; 2014 May; 251():11-5. PubMed ID: 24560820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the mechanical properties of yeast cell walls.
    Stenson JD; Hartley P; Wang C; Thomas CR
    Biotechnol Prog; 2011; 27(2):505-12. PubMed ID: 21485033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intranuclear strain in living cells subjected to substrate stretching: A combined experimental and computational study.
    Tsukamoto S; Asakawa T; Kimura S; Takesue N; Mofrad MRK; Sakamoto N
    J Biomech; 2021 Apr; 119():110292. PubMed ID: 33667883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy.
    Guzmán C; Jeney S; Kreplak L; Kasas S; Kulik AJ; Aebi U; Forró L
    J Mol Biol; 2006 Jul; 360(3):623-30. PubMed ID: 16765985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vimentin enhances cell elastic behavior and protects against compressive stress.
    Mendez MG; Restle D; Janmey PA
    Biophys J; 2014 Jul; 107(2):314-323. PubMed ID: 25028873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.