These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25464702)

  • 1. A review on methods of recovery of acid(s) from spent pickle liquor of steel industry.
    Ghare NY; Wani KS; Patil VS
    J Environ Sci Eng; 2013 Apr; 55(2):253-66. PubMed ID: 25464702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimizing the creation of spent pickling liquors in a pickling process with high-concentration hydrochloric acid solutions: mechanism and evaluation method.
    Tang B; Su W; Wang J; Fu F; Yu G; Zhang J
    J Environ Manage; 2012 May; 98():147-54. PubMed ID: 22266479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries.
    Agrawal A; Sahu KK
    J Hazard Mater; 2009 Nov; 171(1-3):61-75. PubMed ID: 19632040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective extraction of zinc(II) over iron(II) from spent hydrochloric acid pickling effluents by liquid-liquid extraction.
    Mansur MB; Rocha SD; Magalhães FS; Benedetto Jdos S
    J Hazard Mater; 2008 Feb; 150(3):669-78. PubMed ID: 17570579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on methods of regeneration of spent pickling solutions from steel processing.
    Regel-Rosocka M
    J Hazard Mater; 2010 May; 177(1-3):57-69. PubMed ID: 20056321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutralization of red mud with pickling waste liquor using Taguchi's design of experimental methodology.
    Rai S; Wasewar KL; Lataye DH; Mishra RS; Puttewar SP; Chaddha MJ; Mahindiran P; Mukhopadhyay J
    Waste Manag Res; 2012 Sep; 30(9):922-30. PubMed ID: 22751850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis of iron and chromium fluorides: mechanism and kinetics.
    Gálvez JL; Dufour J; Negro C; López-Mateos F
    J Hazard Mater; 2008 Jun; 154(1-3):135-45. PubMed ID: 17988794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent.
    Bao S; Tang L; Li K; Ning P; Peng J; Guo H; Zhu T; Liu Y
    J Colloid Interface Sci; 2016 Jan; 462():235-42. PubMed ID: 26458121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of zinc(II) from HCl spent pickling solutions by solvent extraction.
    Regel M; Sastre AM; Szymanowski J
    Environ Sci Technol; 2001 Feb; 35(3):630-5. PubMed ID: 11351740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion Dialysis for Separation of Hydrochloric Acid, Iron and Zinc Ions from Highly Concentrated Pickling Solutions.
    Gueccia R; Aguirre AR; Randazzo S; Cipollina A; Micale G
    Membranes (Basel); 2020 Jun; 10(6):. PubMed ID: 32599784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on sludge minimization during the treatment of pickling effluent.
    Singhal A; Tewari VK; Prakash S
    J Environ Sci Eng; 2006 Apr; 48(2):109-12. PubMed ID: 17913186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scale-Up of Membrane-Based Zinc Recovery from Spent Pickling Acids of Hot-Dip Galvanizing.
    Arguillarena A; Margallo M; Arruti-Fernández A; Pinedo J; Gómez P; Urtiaga A
    Membranes (Basel); 2020 Dec; 10(12):. PubMed ID: 33561072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel approach for recovery of metals from waste printed circuit boards and simultaneous removal of iron from steel pickling waste liquor by two-step hydrometallurgical method.
    Wang L; Li Q; Li Y; Sun X; Li J; Shen J; Han W; Wang L
    Waste Manag; 2018 Jan; 71():411-419. PubMed ID: 29030122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrometallurgical processing of carbon steel EAF dust.
    Havlík T; Vidor e Souza B; Bernardes AM; Schneider IA; Miskufová A
    J Hazard Mater; 2006 Jul; 135(1-3):311-8. PubMed ID: 16442223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of steel foundry electric arc furnace dust solidified/stabilized with Portland cement.
    Salihoglu G; Pinarli V; Salihoglu NK; Karaca G
    J Environ Manage; 2007 Oct; 85(1):190-7. PubMed ID: 17084503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Status of research on the resource utilization of stainless steel pickling sludge in China: a review.
    Shi C; Zhang Y; Zhou S; Jiang J; Huang X; Hua J
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90223-90242. PubMed ID: 37004610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilisation of Cr(VI) in stainless steel plant dust through sintering using silica-rich clay.
    Ma G; Garbers-Craig AM
    J Hazard Mater; 2009 Sep; 169(1-3):210-6. PubMed ID: 19406572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal extraction from PCB wastewater treatment sludge by sulfuric acid.
    Kuan YC; Lee IH; Chern JM
    J Hazard Mater; 2010 May; 177(1-3):881-6. PubMed ID: 20079970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of Spent Pickling Solutions by Diffusion Dialysis Using Anion-Exchange Membrane Neosepta-AFN.
    Bendová H; Dušek L
    Membranes (Basel); 2022 Dec; 13(1):. PubMed ID: 36676816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.