These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1028 related articles for article (PubMed ID: 25465067)
1. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation. Wang J; Suenaga H; Liao H; Hoshi K; Yang L; Kobayashi E; Sakuma I Comput Med Imaging Graph; 2015 Mar; 40():147-59. PubMed ID: 25465067 [TBL] [Abstract][Full Text] [Related]
2. Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study. Suenaga H; Tran HH; Liao H; Masamune K; Dohi T; Hoshi K; Takato T BMC Med Imaging; 2015 Nov; 15():51. PubMed ID: 26525142 [TBL] [Abstract][Full Text] [Related]
3. Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery. Wang J; Suenaga H; Hoshi K; Yang L; Kobayashi E; Sakuma I; Liao H IEEE Trans Biomed Eng; 2014 Apr; 61(4):1295-304. PubMed ID: 24658253 [TBL] [Abstract][Full Text] [Related]
4. A practical marker-less image registration method for augmented reality oral and maxillofacial surgery. Wang J; Shen Y; Yang S Int J Comput Assist Radiol Surg; 2019 May; 14(5):763-773. PubMed ID: 30825070 [TBL] [Abstract][Full Text] [Related]
5. A fully automated calibration method for an optical see-through head-mounted operating microscope with variable zoom and focus. Figl M; Ede C; Hummel J; Wanschitz F; Ewers R; Bergmann H; Birkfellner W IEEE Trans Med Imaging; 2005 Nov; 24(11):1492-9. PubMed ID: 16279085 [TBL] [Abstract][Full Text] [Related]
6. Vision-based endoscope tracking for 3D ultrasound image-guided surgical navigation. Yang L; Wang J; Ando T; Kubota A; Yamashita H; Sakuma I; Chiba T; Kobayashi E Comput Med Imaging Graph; 2015 Mar; 40():205-16. PubMed ID: 25263644 [TBL] [Abstract][Full Text] [Related]
7. Surgical navigation by autostereoscopic image overlay of integral videography. Liao H; Hata N; Nakajima S; Iwahara M; Sakuma I; Dohi T IEEE Trans Inf Technol Biomed; 2004 Jun; 8(2):114-21. PubMed ID: 15217256 [TBL] [Abstract][Full Text] [Related]
8. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study. Suenaga H; Hoang Tran H; Liao H; Masamune K; Dohi T; Hoshi K; Mori Y; Takato T Int J Oral Sci; 2013 Jun; 5(2):98-102. PubMed ID: 23703710 [TBL] [Abstract][Full Text] [Related]
9. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Su LM; Vagvolgyi BP; Agarwal R; Reiley CE; Taylor RH; Hager GD Urology; 2009 Apr; 73(4):896-900. PubMed ID: 19193404 [TBL] [Abstract][Full Text] [Related]
10. Simple camera calibration from a single image using five points on two orthogonal 1-D objects. Miyagawa I; Arai H; Koike H IEEE Trans Image Process; 2010 Jun; 19(6):1528-38. PubMed ID: 20129859 [TBL] [Abstract][Full Text] [Related]
11. Video see-through augmented reality for oral and maxillofacial surgery. Wang J; Suenaga H; Yang L; Kobayashi E; Sakuma I Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 27283505 [TBL] [Abstract][Full Text] [Related]
12. Real-time motion tracking in image-guided oral implantology. Chen X; Lin Y; Wu Y; Wang C Int J Med Robot; 2008 Dec; 4(4):339-47. PubMed ID: 18803338 [TBL] [Abstract][Full Text] [Related]
13. Reconstruction of a 3D surface from video that is robust to missing data and outliers: application to minimally invasive surgery using stereo and mono endoscopes. Hu M; Penney G; Figl M; Edwards P; Bello F; Casula R; Rueckert D; Hawkes D Med Image Anal; 2012 Apr; 16(3):597-611. PubMed ID: 21195656 [TBL] [Abstract][Full Text] [Related]
14. A markerless automatic deformable registration framework for augmented reality navigation of laparoscopy partial nephrectomy. Zhang X; Wang J; Wang T; Ji X; Shen Y; Sun Z; Zhang X Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1285-1294. PubMed ID: 31016562 [TBL] [Abstract][Full Text] [Related]
15. A review of 3D/2D registration methods for image-guided interventions. Markelj P; Tomaževič D; Likar B; Pernuš F Med Image Anal; 2012 Apr; 16(3):642-61. PubMed ID: 20452269 [TBL] [Abstract][Full Text] [Related]
16. Minimal representations of 3D models in terms of image parameters under calibrated and uncalibrated perspective. Caglioti V IEEE Trans Pattern Anal Mach Intell; 2004 Sep; 26(9):1234-8. PubMed ID: 15742898 [TBL] [Abstract][Full Text] [Related]
17. Pq-space based non-photorealistic rendering for augmented reality. Lerotic M; Chung AJ; Mylonas G; Yang GZ Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):102-9. PubMed ID: 18044558 [TBL] [Abstract][Full Text] [Related]
18. Precision-guided surgical navigation system using laser guidance and 3D autostereoscopic image overlay. Liao H; Ishihara H; Tran HH; Masamune K; Sakuma I; Dohi T Comput Med Imaging Graph; 2010 Jan; 34(1):46-54. PubMed ID: 19674871 [TBL] [Abstract][Full Text] [Related]
19. Moving-Tolerant Augmented Reality Surgical Navigation System Using Autostereoscopic Three-Dimensional Image Overlay. Ma C; Chen G; Zhang X; Ning G; Liao H IEEE J Biomed Health Inform; 2019 Nov; 23(6):2483-2493. PubMed ID: 30530379 [TBL] [Abstract][Full Text] [Related]
20. Self-calibrating 3D-ultrasound-based bone registration for minimally invasive orthopedic surgery. Barratt DC; Penney GP; Chan CS; Slomczykowski M; Carter TJ; Edwards PJ; Hawkes DJ IEEE Trans Med Imaging; 2006 Mar; 25(3):312-23. PubMed ID: 16524087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]