These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25465510)

  • 1. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study.
    Biganzoli L; Racanella G; Marras R; Rigamonti L
    Waste Manag; 2015 Jan; 35():127-34. PubMed ID: 25465510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High temperature abatement of acid gases from waste incineration. Part I: experimental tests in full scale plants.
    Biganzoli L; Racanella G; Rigamonti L; Marras R; Grosso M
    Waste Manag; 2015 Feb; 36():98-105. PubMed ID: 25465511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Techno-economic performance of HCl and SO
    Dal Pozzo A; Lazazzara L; Antonioni G; Cozzani V
    J Hazard Mater; 2020 Jul; 394():122518. PubMed ID: 32217421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of the flue gas cleaning system of an RDF incineration power plant.
    Jannelli E; Minutillo M
    Waste Manag; 2007; 27(5):684-90. PubMed ID: 16750619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life-cycle assessment of a Waste-to-Energy plant in central Norway: Current situation and effects of changes in waste fraction composition.
    Lausselet C; Cherubini F; Del Alamo Serrano G; Becidan M; Strømman AH
    Waste Manag; 2016 Dec; 58():191-201. PubMed ID: 27679967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes.
    Dal Pozzo A; Antonioni G; Guglielmi D; Stramigioli C; Cozzani V
    Waste Manag; 2016 May; 51():81-90. PubMed ID: 26951719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies.
    Arena U; Ardolino F; Di Gregorio F
    Waste Manag; 2015 Jul; 41():60-74. PubMed ID: 25899036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LCA of management strategies for RDF incineration and gasification bottom ash based on experimental leaching data.
    Di Gianfilippo M; Costa G; Pantini S; Allegrini E; Lombardi F; Astrup TF
    Waste Manag; 2016 Jan; 47(Pt B):285-98. PubMed ID: 26095983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life cycle assessment of thermal waste-to-energy technologies: review and recommendations.
    Astrup TF; Tonini D; Turconi R; Boldrin A
    Waste Manag; 2015 Mar; 37():104-15. PubMed ID: 25052337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants.
    Dong J; Tang Y; Nzihou A; Chi Y; Weiss-Hortala E; Ni M
    Sci Total Environ; 2018 Jun; 626():744-753. PubMed ID: 29396338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental impacts of residual municipal solid waste incineration: a comparison of 110 French incinerators using a life cycle approach.
    Beylot A; Villeneuve J
    Waste Manag; 2013 Dec; 33(12):2781-8. PubMed ID: 23910245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental impact assessment of a WtE plant after structural upgrade measures.
    Passarini F; Nicoletti M; Ciacci L; Vassura I; Morselli L
    Waste Manag; 2014 Apr; 34(4):753-62. PubMed ID: 24484765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.
    Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M
    Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland.
    Boesch ME; Vadenbo C; Saner D; Huter C; Hellweg S
    Waste Manag; 2014 Feb; 34(2):378-89. PubMed ID: 24315553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air pollution control systems in WtE units: an overview.
    Vehlow J
    Waste Manag; 2015 Mar; 37():58-74. PubMed ID: 25022549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LCA to choose among alternative design solutions: the case study of a new Italian incineration line.
    Scipioni A; Mazzi A; Niero M; Boatto T
    Waste Manag; 2009 Sep; 29(9):2462-74. PubMed ID: 19450963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal utilization of waste-to-energy in an LCA perspective.
    Fruergaard T; Astrup T
    Waste Manag; 2011 Mar; 31(3):572-82. PubMed ID: 20937557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy recovery from waste incineration: assessing the importance of district heating networks.
    Fruergaard T; Christensen TH; Astrup T
    Waste Manag; 2010 Jul; 30(7):1264-72. PubMed ID: 20385481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations.
    Fu Z; Zhang S; Li X; Shao J; Wang K; Chen H
    Waste Manag; 2015 Apr; 38():149-56. PubMed ID: 25680237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions.
    Astrup T; Møller J; Fruergaard T
    Waste Manag Res; 2009 Nov; 27(8):789-99. PubMed ID: 19748939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.