These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 2546561)
21. The inhibition of insulin action and glucose metabolism by porcine growth hormone in porcine adipocytes is not the result of any decrease in insulin binding or insulin receptor kinase activity. Magri KA; Adamo M; Leroith D; Etherton TD Biochem J; 1990 Feb; 266(1):107-13. PubMed ID: 2155602 [TBL] [Abstract][Full Text] [Related]
22. Association of Metformin's effect to increase insulin-stimulated glucose transport with potentiation of insulin-induced translocation of glucose transporters from intracellular pool to plasma membrane in rat adipocytes. Matthaei S; Hamann A; Klein HH; Benecke H; Kreymann G; Flier JS; Greten H Diabetes; 1991 Jul; 40(7):850-7. PubMed ID: 1647995 [TBL] [Abstract][Full Text] [Related]
23. Diacylglycerols modulate insulin action in rat adipocytes. Terry ML; Levy J; Grunberger G Horm Metab Res; 1991 Jun; 23(6):266-70. PubMed ID: 1916636 [TBL] [Abstract][Full Text] [Related]
25. Insulinomimetic effects of myricetin on lipogenesis and glucose transport in rat adipocytes but not glucose transport translocation. Ong KC; Khoo HE Biochem Pharmacol; 1996 Feb; 51(4):423-9. PubMed ID: 8619886 [TBL] [Abstract][Full Text] [Related]
26. Insulin induces progressive insulin resistance in cultured rat adipocytes. Sequential effects at receptor and multiple postreceptor sites. Garvey WT; Olefsky JM; Marshall S Diabetes; 1986 Mar; 35(3):258-67. PubMed ID: 3512337 [TBL] [Abstract][Full Text] [Related]
27. In vivo metformin treatment ameliorates insulin resistance: evidence for potentiation of insulin-induced translocation and increased functional activity of glucose transporters in obese (fa/fa) Zucker rat adipocytes. Matthaei S; Reibold JP; Hamann A; Benecke H; Häring HU; Greten H; Klein HH Endocrinology; 1993 Jul; 133(1):304-11. PubMed ID: 8391425 [TBL] [Abstract][Full Text] [Related]
28. Correlation between insulin receptor occupancy and tyrosine kinase activity at low insulin concentrations and effect of major histocompatibility complex class I-derived peptide. Stagsted J; Hansen T; Roth RA; Goldstein A; Olsson L J Pharmacol Exp Ther; 1993 Nov; 267(2):997-1001. PubMed ID: 8246175 [TBL] [Abstract][Full Text] [Related]
29. Further evidence for a two-step model of glucose-transport regulation. Inositol phosphate-oligosaccharides regulate glucose-carrier activity. Obermaier-Kusser B; Mühlbacher C; Mushack J; Seffer E; Ermel B; Machicao F; Schmidt F; Häring HU Biochem J; 1989 Aug; 261(3):699-705. PubMed ID: 2803236 [TBL] [Abstract][Full Text] [Related]
30. Relationship of site-specific beta subunit tyrosine autophosphorylation to insulin activation of the insulin receptor (tyrosine) protein kinase activity. Tornqvist HE; Avruch J J Biol Chem; 1988 Apr; 263(10):4593-601. PubMed ID: 2832399 [TBL] [Abstract][Full Text] [Related]
31. Insulin receptor kinase is hyperresponsive in adipocytes of young obese Zucker rats. Debant A; Guerre-Millo M; Le Marchand-Brustel Y; Freychet P; Lavau M; Van Obberghen E Am J Physiol; 1987 Feb; 252(2 Pt 1):E273-8. PubMed ID: 3548422 [TBL] [Abstract][Full Text] [Related]
32. Alpha2-Heremans Schmid glycoprotein inhibits insulin-stimulated Elk-1 phosphorylation, but not glucose transport, in rat adipose cells. Chen H; Srinivas PR; Cong LN; Li Y; Grunberger G; Quon MJ Endocrinology; 1998 Oct; 139(10):4147-54. PubMed ID: 9751494 [TBL] [Abstract][Full Text] [Related]
33. Kinetic properties of the insulin receptor tyrosine protein kinase: activation through an insulin-stimulated tyrosine-specific, intramolecular autophosphorylation. Kwok YC; Nemenoff RA; Powers AC; Avruch J Arch Biochem Biophys; 1986 Jan; 244(1):102-13. PubMed ID: 3004334 [TBL] [Abstract][Full Text] [Related]
34. Activation of liver and muscle insulin receptor tyrosine kinase activity during in vivo insulin administration in rats. Kruszynska YT; Halban PA; Kahn CR; White MF Diabetologia; 1990 Feb; 33(2):77-83. PubMed ID: 2158467 [TBL] [Abstract][Full Text] [Related]
35. Mechanism of insulin resistance induced by sustained levels of cytosolic free calcium in rat adipocytes. Draznin B; Lewis D; Houlder N; Sherman N; Adamo M; Garvey WT; LeRoith D; Sussman K Endocrinology; 1989 Nov; 125(5):2341-9. PubMed ID: 2551647 [TBL] [Abstract][Full Text] [Related]
36. Insulin receptor kinase activity in rat adipocytes is decreased during aging. Carrascosa JM; Ruíz P; Martínez C; Pulido JA; Satrústegui J; Andrés A Biochem Biophys Res Commun; 1989 Apr; 160(1):303-9. PubMed ID: 2653319 [TBL] [Abstract][Full Text] [Related]
37. Insulin can rapidly increase cell surface insulin binding capacity in rat adipocytes. A novel mechanism related to insulin sensitivity. Eriksson J; Lönnroth P; Smith U Diabetes; 1992 Jun; 41(6):707-14. PubMed ID: 1316856 [TBL] [Abstract][Full Text] [Related]
38. Arsenite stimulated glucose transport in 3T3-L1 adipocytes involves both Glut4 translocation and p38 MAPK activity. Bazuine M; Ouwens DM; Gomes de Mesquita DS; Maassen JA Eur J Biochem; 2003 Oct; 270(19):3891-903. PubMed ID: 14511371 [TBL] [Abstract][Full Text] [Related]
39. Insulin receptor kinase following internalization in isolated rat adipocytes. Klein HH; Freidenberg GR; Matthaei S; Olefsky JM J Biol Chem; 1987 Aug; 262(22):10557-64. PubMed ID: 3038888 [TBL] [Abstract][Full Text] [Related]
40. Calcium-dependence of insulin receptor phosphorylation. Plehwe WE; Williams PF; Caterson ID; Harrison LC; Turtle JR Biochem J; 1983 Aug; 214(2):361-6. PubMed ID: 6351850 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]