BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2546582)

  • 1. Kinetic isotope effect studies on aspartate aminotransferase: evidence for a concerted 1,3 prototropic shift mechanism for the cytoplasmic isozyme and L-aspartate and dichotomy in mechanism.
    Julin DA; Kirsch JF
    Biochemistry; 1989 May; 28(9):3825-33. PubMed ID: 2546582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of free energy barriers in the cytoplasmic and mitochondrial aspartate aminotransferase reactions probed by hydrogen-exchange kinetics of C alpha-labeled amino acids with solvent.
    Julin DA; Wiesinger H; Toney MD; Kirsch JF
    Biochemistry; 1989 May; 28(9):3815-21. PubMed ID: 2665809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reaction catalyzed by Escherichia coli aspartate aminotransferase has multiple partially rate-determining steps, while that catalyzed by the Y225F mutant is dominated by ketimine hydrolysis.
    Goldberg JM; Kirsch JF
    Biochemistry; 1996 Apr; 35(16):5280-91. PubMed ID: 8611515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crotonase-catalyzed beta-elimination is concerted: a double isotope effect study.
    Bahnson BJ; Anderson VE
    Biochemistry; 1991 Jun; 30(24):5894-906. PubMed ID: 2043630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent and substrate deuterium isotope effects on a transamination reaction catalyzed by pig heart aspartate aminotransferase.
    Jenkins WT; Harruff RC
    Arch Biochem Biophys; 1979 Feb; 192(2):421-9. PubMed ID: 434835
    [No Abstract]   [Full Text] [Related]  

  • 6. Acid base catalytic mechanism of the dihydropyrimidine dehydrogenase from pH studies.
    Podschun B; Jahnke K; Schnackerz KD; Cook PF
    J Biol Chem; 1993 Feb; 268(5):3407-13. PubMed ID: 8429016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical mechanism and rate-limiting steps in the reaction catalyzed by Streptococcus faecalis NADH peroxidase.
    Stoll VS; Blanchard JS
    Biochemistry; 1991 Jan; 30(4):942-8. PubMed ID: 1899199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic isotope effect analysis of the reaction catalyzed by Trypanosoma congolense trypanothione reductase.
    Leichus BN; Bradley M; Nadeau K; Walsh CT; Blanchard JS
    Biochemistry; 1992 Jul; 31(28):6414-20. PubMed ID: 1633154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of site-directed mutagenesis and alternative substrates to assign the prototropic groups important to catalysis by Escherichia coli aspartate aminotransferase.
    Gloss LM; Kirsch JF
    Biochemistry; 1995 Mar; 34(12):3999-4007. PubMed ID: 7696265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the determination of isozyme levels in preparations containing cytoplasmic and mitochondrial aspartate aminotransferase.
    Martinez-Carrion M; Barber B; Pazoles P
    Biochim Biophys Acta; 1977 Jun; 482(2):323-9. PubMed ID: 18183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic studies on the bovine liver mitochondrial dihydroorotate dehydrogenase using kinetic deuterium isotope effects.
    Hines V; Johnston M
    Biochemistry; 1989 Feb; 28(3):1227-34. PubMed ID: 2540820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic studies with the use of proton-magnetic-resonance spectroscopy of the specific alpha-deuteration of amino acids by Escherichia coli aspartate aminotransferase.
    Gout E; Chesne S; Beguin CG; Pelmont J
    Biochem J; 1978 Jun; 171(3):719-23. PubMed ID: 352342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irreversible inactivation of aspartate aminotransferase by 2-oxoglutaconic acid and its dimethyl ester.
    Kato Y; Asano Y; Makar TK; Cooper AJ
    J Biochem; 1996 Sep; 120(3):531-9. PubMed ID: 8902617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of multiple isotope effects to study the mechanism of 6-phosphogluconate dehydrogenase.
    Rendina AR; Hermes JD; Cleland WW
    Biochemistry; 1984 Dec; 23(25):6257-62. PubMed ID: 6395897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tyrosine-225 to phenylalanine mutation of Escherichia coli aspartate aminotransferase results in an alkaline transition in the spectrophotometric and kinetic pKa values and reduced values of both kcat and Km.
    Goldberg JM; Swanson RV; Goodman HS; Kirsch JF
    Biochemistry; 1991 Jan; 30(1):305-12. PubMed ID: 1988027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aspartate aminotransferase catalyzed oxygen exchange with solvent from oxygen-18-enriched alpha-ketoglutarate: evidence for slow exchange of enzyme-bound water.
    McLeish MJ; Julin DA; Kirsch JF
    Biochemistry; 1989 May; 28(9):3821-5. PubMed ID: 2568851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreasing the basicity of the active site base, Lys-258, of Escherichia coli aspartate aminotransferase by replacement with gamma-thialysine.
    Gloss LM; Kirsch JF
    Biochemistry; 1995 Mar; 34(12):3990-8. PubMed ID: 7696264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic reaction profile for alcohol oxidation by galactose oxidase.
    Whittaker MM; Whittaker JW
    Biochemistry; 2001 Jun; 40(24):7140-8. PubMed ID: 11401560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical mechanism of Haemophilus influenzae diaminopimelate epimerase.
    Koo CW; Blanchard JS
    Biochemistry; 1999 Apr; 38(14):4416-22. PubMed ID: 10194362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic studies on the 8-amino-7-oxopelargonate synthase, a pyridoxal-5'-phosphate-dependent enzyme involved in biotin biosynthesis.
    Ploux O; Marquet A
    Eur J Biochem; 1996 Feb; 236(1):301-8. PubMed ID: 8617279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.