These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2546592)

  • 61. Role of cyclic AMP in rat aortic microsomal phosphorylation and calcium uptake.
    Bhalla RC; Webb RC; Singh D; Brock T
    Am J Physiol; 1978 May; 234(5):H508-14. PubMed ID: 206157
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Tyrosine kinase and phosphatidylinositol 3-kinase activation are required for cyclic adenosine 3',5'-monophosphate-dependent potentiation of deoxyribonucleic acid synthesis induced by insulin-like growth factor-I in FRTL-5 cells.
    Nedachi T; Akahori M; Ariga M; Sakamoto H; Suzuki N; Umesaki K; Hakuno F; Takahashi SI
    Endocrinology; 2000 Jul; 141(7):2429-38. PubMed ID: 10875243
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparison of phosphorylation of ribosomal proteins from HeLa and Krebs II ascites-tumour cells by cyclic AMP-dependent and cyclic GMP-dependent protein kinases.
    Issinger OG; Beier H; Speichermann N; Flokerzi V; Hofmann F
    Biochem J; 1980 Jan; 185(1):89-99. PubMed ID: 6246882
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Activation of phospholipid methyltransferase by glucagon in rat hepatocytes.
    CastaƱo JG; Alemany S; Nieto A; Mato JM
    J Biol Chem; 1980 Oct; 255(19):9041-3. PubMed ID: 6251072
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Studies on the phosphorylation and synthesis of type I regulatory subunit of cyclic AMP-dependent protein kinase in intact S49 mouse lymphoma cells.
    Steinberg RA; Agard DA
    J Biol Chem; 1981 Nov; 256(21):11356-64. PubMed ID: 6270151
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A component of genetic variation among mice in activity of transmembrane methyltransferase I determined by the H-2 region.
    Markovac J; Erickson RP
    Biochem Pharmacol; 1985 Oct; 34(19):3421-5. PubMed ID: 4052092
    [TBL] [Abstract][Full Text] [Related]  

  • 67. cAMP-dependent phosphorylation of betaig-h3 protein in human corneal endothelial cells.
    Srivastava OP; Srivastava K
    Curr Eye Res; 1999 Oct; 19(4):348-57. PubMed ID: 10520231
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Microsomal phosphatidylethanolamine methyltransferase: some physical and kinetic properties.
    Hoffman DR; Cornatzer WE
    Lipids; 1981 Jul; 16(7):533-40. PubMed ID: 7278514
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In vitro phosphorylation of microtubule-associated protein 2: differential effects of cyclic AMP analogues.
    Richter-Landsberg C; Jastorff B
    J Neurochem; 1985 Oct; 45(4):1218-22. PubMed ID: 2993522
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Phosphorylation of a single subunit of the epithelial Na+ channel protein following vasopressin treatment of A6 cells.
    Sariban-Sohraby S; Sorscher EJ; Brenner BM; Benos DJ
    J Biol Chem; 1988 Sep; 263(27):13875-9. PubMed ID: 2458353
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Pitfalls and problems in studies on the methylation of phosphatidylethanolamine.
    Audubert F; Vance DE
    J Biol Chem; 1983 Sep; 258(17):10695-701. PubMed ID: 6885797
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cloning and expression of a novel phosphatidylethanolamine N-methyltransferase. A specific biochemical and cytological marker for a unique membrane fraction in rat liver.
    Cui Z; Vance JE; Chen MH; Voelker DR; Vance DE
    J Biol Chem; 1993 Aug; 268(22):16655-63. PubMed ID: 8344945
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Substrates for adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase in the rat pituitary gland.
    Furuki Y; Yamamoto T; Guild S; Kebabian JW
    Cell Mol Neurobiol; 1988 Mar; 8(1):71-83. PubMed ID: 2841026
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Phosphorylation of glucokinase from rat liver in vitro by protein kinase A with a concomitant decrease of its activity.
    Ekman P; Nilsson E
    Arch Biochem Biophys; 1988 Mar; 261(2):275-82. PubMed ID: 3355151
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phospholipid methylation in brain membrane preparations: kinetic mechanism.
    Reitz RC; Mead DJ; Welch WH
    Biochim Biophys Acta; 1993 Feb; 1166(2-3):139-44. PubMed ID: 8443229
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Insulin-dependent phosphorylation of calmodulin in rat hepatocytes.
    Joyal JL; Sacks DB
    J Biol Chem; 1994 Nov; 269(47):30039-48. PubMed ID: 7962005
    [TBL] [Abstract][Full Text] [Related]  

  • 77. P450 phosphorylation in isolated hepatocytes and in vivo.
    Koch JA; Waxman DJ
    Methods Enzymol; 1991; 206():305-15. PubMed ID: 1664478
    [No Abstract]   [Full Text] [Related]  

  • 78. Characterization of phenylalanine hydroxylase from rat kidney.
    Richardson SC; Fisher MJ
    Int J Biochem; 1993 Apr; 25(4):581-8. PubMed ID: 8385637
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biphasic changes in the sarcolemmal phosphatidylethanolamine N-methylation activity in catecholamine-induced cardiomyopathy.
    Okumura K; Panagia V; Beamish RE; Dhalla NS
    J Mol Cell Cardiol; 1987 Apr; 19(4):357-66. PubMed ID: 3612819
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Changes in protein phosphorylation in wild-type and nickel-resistant cells and their involvement in morphological elongation.
    Wang XW; Costa M
    Biol Met; 1991; 4(4):201-6. PubMed ID: 1663778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.