BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 25466103)

  • 21. Multiple tests on saffron find new adulterant materials and reveal that Ist grade saffron is rare in the market.
    Khilare V; Tiknaik A; Prakash B; Ughade B; Korhale G; Nalage D; Ahmed N; Khedkar C; Khedkar G
    Food Chem; 2019 Jan; 272():635-642. PubMed ID: 30309592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Barcoding melting curve analysis for rapid, sensitive, and discriminating authentication of saffron (Crocus sativus L.) from its adulterants.
    Jiang C; Cao L; Yuan Y; Chen M; Jin Y; Huang L
    Biomed Res Int; 2014; 2014():809037. PubMed ID: 25548775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of adulteration in the market samples of saffron using morphology, HPLC, HPTLC, and DNA barcoding methods.
    Bhooma V; Vassou SL; Kaliappan I; Parani M
    Genome; 2024 Feb; 67(2):43-52. PubMed ID: 37922517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel 3D-fluorescence sensing strategy based on HN-chitosan polymer probe for rapid identification and quantification of potential adulteration in saffron.
    Long W; Deng G; Zhu Y; Han Q; Chen H; She Y; Fu H
    Food Chem; 2023 Dec; 429():136902. PubMed ID: 37517222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Authentication of saffron using 60 MHz
    Gunning Y; Davies KS; Kemsley EK
    Food Chem; 2023 Mar; 404(Pt B):134649. PubMed ID: 36288673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increasing the applications of Crocus sativus flowers as natural antioxidants.
    Serrano-Díaz J; Sánchez AM; Maggi L; Martínez-Tomé M; García-Diz L; Murcia MA; Alonso GL
    J Food Sci; 2012 Nov; 77(11):C1162-8. PubMed ID: 23057806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A rapid MALDI MS/MS based method for assessing saffron (Crocus sativus L.) adulteration.
    Aiello D; Siciliano C; Mazzotti F; Di Donna L; Athanassopoulos CM; Napoli A
    Food Chem; 2020 Mar; 307():125527. PubMed ID: 31648179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Relation between Drying Conditions and the Development of Volatile Compounds in Saffron (
    Cid-Pérez TS; Nevárez-Moorillón GV; Ochoa-Velasco CE; Navarro-Cruz AR; Hernández-Carranza P; Avila-Sosa R
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated analytical methodology to investigate bioactive compounds in Crocus sativus L. flowers.
    Cusano E; Consonni R; Petrakis EA; Astraka K; Cagliani LR; Polissiou MG
    Phytochem Anal; 2018 Sep; 29(5):476-486. PubMed ID: 29484754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. External parameter orthogonalization-support vector machine for processing of attenuated total reflectance-mid-infrared spectra: A solution for saffron authenticity problem.
    Amirvaresi A; Parastar H
    Anal Chim Acta; 2021 Apr; 1154():338308. PubMed ID: 33736807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential application of machine vision technology to saffron (Crocus sativus L.) quality characterization.
    Kiani S; Minaei S
    Food Chem; 2016 Dec; 212():392-4. PubMed ID: 27374547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of synthetic dyes magenta III (new fuchsin) and rhodamine B as common adulterants in commercial saffron.
    Bhooma V; Nagasathiya K; Vairamani M; Parani M
    Food Chem; 2020 Mar; 309():125793. PubMed ID: 31699557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a high-performance liquid chromatography with tandem mass spectrometry method for identifying common adulterant content in saffron (Crocus sativus L.).
    Kong W; An H; Zhang J; Sun L; Nan Y; Song A; Zhou L
    J Pharm Pharmacol; 2019 Dec; 71(12):1864-1870. PubMed ID: 31486097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytochemistry, quality control and medicinal uses of Saffron (
    Aissa R; Ibourki M; Ait Bouzid H; Bijla L; Oubannin S; Sakar EH; Jadouali S; Hermansyah A; Goh KW; Ming LC; Bouyahya A; Gharby S
    J Med Life; 2023 Jun; 16(6):822-836. PubMed ID: 37675158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A stepwise approach for the detection of carminic acid in saffron with regard to religious food certification.
    Ordoudi SA; Staikidou C; Kyriakoudi A; Tsimidou MZ
    Food Chem; 2018 Nov; 267():410-419. PubMed ID: 29934185
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vis-NIR hyperspectral imaging coupled with independent component analysis for saffron authentication.
    Hashemi-Nasab FS; Parastar H
    Food Chem; 2022 Nov; 393():133450. PubMed ID: 35751218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel method for the quality control of saffron through the simultaneous analysis of authenticity and adulteration markers by liquid chromatography-(quadrupole-time of flight)-mass spectrometry.
    Guijarro-Díez M; Castro-Puyana M; Crego AL; Marina ML
    Food Chem; 2017 Aug; 228():403-410. PubMed ID: 28317741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the quality control of traded saffron by means of transmission Fourier-transform mid-infrared (FT-MIR) spectroscopy and chemometrics.
    Ordoudi SA; de los Mozos Pascual M; Tsimidou MZ
    Food Chem; 2014 May; 150():414-21. PubMed ID: 24360470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Special Issue "Saffron (Crocus sativus, L.): Omics and Other Techniques in Authenticity, Quality, and Bioactivity Studies".
    Tsimidou M; Tarantilis PA
    Molecules; 2016 Dec; 22(1):. PubMed ID: 28025553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quality assessment of the saffron samples using second-order spectrophotometric data assisted by three-way chemometric methods via quantitative analysis of synthetic colorants in adulterated saffron.
    Masoum S; Gholami A; Hemmesi M; Abbasi S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():389-95. PubMed ID: 25919327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.